973 resultados para ELKO spinor fields
Resumo:
We report the observation of strongly temperature (T)-dependent spectral lines in electronic Raman-scattering spectra of graphite in a high magnetic field up to 45 T applied along the c axis. The magnetic field quantizes the in-plane motion, while the out-of-plane motion remains free, effectively reducing the system dimension from 3 to 1. Optically created electron-hole pairs interact with, or shake up, the one-dimensional Fermi sea in the lowest Landau subbands. Based on the Tomonaga-Luttinger liquid theory, we show that interaction effects modify the spectral line shape from (ω-Δ)-1/2 to (ω-Δ)2α-1/2 at T = 0. At finite T, we predict a thermal broadening factor that increases linearly with T. Our model reproduces the observed T-dependent line shape, determining the electron-electron interaction parameter α to be ∼0.05 at 40 T. © 2014 American Physical Society.
Resumo:
In the desert areas of China investigated by the authors, various biological crusts were predominately associated with three blue-green algal (cyano bacterial) species, Microcoleus vaginatus Gom., Phormidium tenue (Menegh.) Gom. and Seytonema javanicum (Mitz.) Born et Flah. Their biomass and their compressive strength were measured simultaneously in the field in this study. It was also found that the compressive strength of algal crusts was enhanced with the increasing of algal biomass from an undetectable level to a value as high as 9.6mg g(-1) dry soil. However, when the algal biomass decreased, the compressive strength did not descend immediately, but remained relatively steady. The higher the algal biomass became, the thicker were the algal crusts formed. Given the same biomass, the highest compressive strength of man-made algal crusts in fields was found at an algal ratio of 62.5% M. vaginatus, 31.25% P. tenue and 6.25% S. javanicum, and it reached 0.89kgcm(-2). When the biomass of the crusts increased above the value of 8.16 mg chl ag(-1) dry soil, the compressive strength would not ascend easily. It indicated that the compressive strength of man-made algal crusts appeared temporarily saturated in the field. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The ability to generate a permanent, stable magnetic field unsupported by an electromotive force is fundamental to a variety of engineering applications. Bulk high temperature superconducting (HTS) materials can trap magnetic fields of magnitude over ten times higher than the maximum field produced by conventional magnets, which is limited practically to rather less than 2 T. In this paper, two large c-axis oriented, single-grain YBCO and GdBCO bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique at temperatures of 40 and 65 K and the characteristics of the resulting trapped field profile are investigated with a view of magnetizing such samples as trapped field magnets (TFMs) in situ inside a trapped flux-type superconducting electric machine. A comparison is made between the temperatures at which the pulsed magnetic field is applied and the results have strong implications for the optimum operating temperature for TFMs in trapped flux-type superconducting electric machines. The effects of inhomogeneities, which occur during the growth process of single-grain bulk superconductors, on the trapped field and maximum temperature rise in the sample are modelled numerically using a 3D finite-element model based on the H-formulation and implemented in Comsol Multiphysics 4.3a. The results agree qualitatively with the observed experimental results, in that inhomogeneities act to distort the trapped field profile and reduce the magnitude of the trapped field due to localized heating within the sample and preferential movement and pinning of flux lines around the growth section regions (GSRs) and growth sector boundaries (GSBs), respectively. The modelling framework will allow further investigation of various inhomogeneities that arise during the processing of (RE)BCO bulk superconductors, including inhomogeneous Jc distributions and the presence of current-limiting grain boundaries and cracks, and it can be used to assist optimization of processing and PFM techniques for practical bulk superconductor applications. © 2014 IOP Publishing Ltd.
Resumo:
The contamination and distribution of polychlorinated dibeinizo-p-dioxins and dibenzofurans (PCDD/Fs) from two agricultural fields of a heavily polluted lake area in China (Ya-Er Lake) are presented. The vertical distribution pattern of total PCDD/Fs in soil cores reveals that the maximum concentration was in the layer of 20-30 cm. The concentrations in the top layer of soil at the two sites were similar (17.48 ng/kg at Site 1 and 18.10 ng/kg at Site 2), but the maximum concentration of Site 1 (120.8 ng/kg) was two times higher than that of Site 2 (64.39 ng/kg). The maximum concentration of PCDD/Fs in mud cores in rice fields (0-50 cm) at Sites 1 and 2 was in the layer of 0-10 cm. The maximum PCDD/F concentration in the top layer in mud at Site 1 (203.1 ng/kg) was higher than that at Site 2: (143.3 ng/kg). Significant correlations were found between the mind PCDD/Fs and the organic carbon content (R = 0.9743, P< 0,05 at Site 1; R = 0.9821, P< 0.05 at Site 2), the two variables being highly correlated (R = 0.9049, P< 0.05, at Site 1; R = 0.9916, P< 0.05 at Site 2). All correlation coefficients were significant at the 95% level. Concentrations were highly correlated with organic carbon, indicating that sorption to organic carbon was the dominant mechanism. Using principal component analysis, the homologue profiles of soil, mud, and plants (rice and radish) were compared. The PCDD/F patterns in plants were found not to be correlated to those in soil and mud. This suggests that atmospheric deposition may be the main source of PCDD/Fs in rice grain. However, mixed exposure involving uptake mechanisms and atmospheric deposition is considered main the source of PCDD/F pollution in radishes. (C) 2002 Elsevier Science (USA).
Resumo:
We present an experimental demonstration of the interaction between the intrinsic second- and third-order optical fields in an Al0.53Ga0.47N/GaN heterostructure. The sample was deposited by metal-organic chemical vapor deposition on (0001) sapphire. The nonlinear optical coefficients of the sample, which were measured with a Mach-Zehnder interferometer system, quadratically increase with the applied modulating voltage, indicating the existence of the third-order optical field. The third-order signal was then detected by the Z-scan method and we calculated the built-in dc field on the AlGaN/GaN interface to confirm the strong interaction between the intrinsic second- and third-order optical fields. (c) 2008 American Institute of Physics.
Resumo:
The magnetic anisotropy in ytterbium iron garnet (YbIG) is theoretically investigated under high magnetic fields (up to 160 kOe). According to the crystal field effect in ytterbium gallium garnet (YbGaG), a detailed discussion of crystal-field interaction in YbIG is presented where a suitable set of crystal-field parameters is obtained. Meanwhile, the influences of nine crystal-field parameters on the crystal-field energy splitting are analyzed. On the other hand, considering the ytterbium-iron (Yb-Fe) superexchange interaction of YbIG, the spontaneous magnetization is calculated at different temperatures for the [111] direction. In particular, we demonstrate that the Wesis constant lambda is the function of 1/T in YbIG. In addition, the field dependences of the magnetization for the [110] and [111] directions are theoretically described where a noticeable anisotropy can be found. Our theory further confirms the great contribution of anisotropic Yb-Fe superexchange interaction to the anisotropy of the magnetization in YbIG. Moreover, our theoretical results are compared with the available experiments.
Resumo:
We have grown resonant tunnelling diodes (RTDs) with different sized emitter prewells and without a prewell. The current-voltage (I-V) characteristics of them in different magnetic fields were investigated. Two important phenomena were observed. First, a high magnetic field can destroy the plateau-like structure in the I-V curves of the RTD. This phenomenon is ascribed to the fact that the high magnetic field will demolish the coupling between the energy level in the main quantum well and that in the emitter quantum well or in the prewell. Secondly, the existence and size of the prewell are also important factors influencing the plateau-like structure.
Resumo:
Through floating catalyst chemical vapour deposition(CVD) method, well-aligned isolated single-walled carbon nanotubes (SWCNTs) and their bundles were deposited on the metal electrodes patterned on the SiO2/Si surface under ac electric fields at relatively low temperature(280 degrees C). It was indicated that SWCNTs were effectively aligned under ac electric fields after they had just grown in the furnace. The time for a SWCNT to be aligned in the electric field and the effect of gas flow were estimated. Polarized Raman scattering was performed to characterize the aligned structure of SWCNTs. This method would be very useful for the controlled fabrication and preparation of SWCNTs in practical applications.
Resumo:
We theoretically investigate the energy spectra of two-electron two-dimensional (2e 2D) quantum dots (QDs) confined by triangular potentials and bowl-like potentials in a magnetic field by exact diagonalization in the framework of effective mass theory. An in-plane electric field is,found to contribute to the singlet-triplet transition of the ground state of the 2e 2D QDs confined by triangular or bowl-like potentials in a perpendicular magnetic field. The stronger the in-plane electric field, the smaller the magnetic field for the total spin of the ground states in the dot systems to change from S = 0 to S = 1. However, the influence of an in-plane electric field on the singlet-triplet transition of the ground state of two electrons in a triangular QD modulated by a perpendicular magnetic field is quite small because the triangular potential just deviates from the harmonic potential well slightly. We End that the strength of the perpendicular magnetic field needed for the spin singlet-triplet transition of the ground state of the QD confined by a bowl-like potential is reduced drastically by applying an in-plane electric field.
Resumo:
Coherent tunnelling is studied in framework of the effective mass approximation for an asymmetric coupled quantum well. The Hartree potential due to the electron-electron interaction is considered in our calculation. The effects of the longitudinal and transverse magnetic field on coherent tunnelling characteristics are discussed. It has been found that the external field plays an important role in modulating the electron states.
Resumo:
We present a new way to meet the amount of strain relaxation in an InGaN quantum well layer grown on relaxed GaN by calculating and measuring its internal field. With perturbation theory, we also calculate the transition energy of InGaN/GaN SQWs as affected by internal fields. The newly reported experimental data by Graham et al. fit our calculations well on the assumption that the InGaN well layer suffered a 20% strain relaxation, we discuss the differences between our calculated results and the experimental data. Our calculation suggests that with the increase of indium mole fraction in the InGaN/GaN quantum well, the effect of polarization fields on the luminescence of the quantum well will increase. Moreover, our calculation also suggests that an increase in the quantum well width by only one monolayer can result in a large reduction in the transition energy. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We investigate theoretically spin-polarized transport in a one-dimensional waveguide structure under spatially periodic electric fields. Strong spin-polarized current can be obtained by tuning the external electric fields. It is interesting to find that the spin-dependent transmissions exhibit gaps at various electron momenta and/or gate lengths, and the gap width increases with increasing the strength of the Rashba effect. The strong spin-polarized current arises from the different transmission gaps of the spin-up and spin-down electrons. (c) 2006 American Institute of Physics.
Resumo:
We investigate theoretically the spin-polarized transport in one-dimensional waveguide structure with spatially-periodic electronic and magnetic fields. The interplay of the spin-orbit interaction and in-plane magnetic field significantly modifies the spin-dependent transmission and the spin polarization. The in-plane magnetic fields increase the strength of the Rashba spin-orbit coupling effect for the electric fields along y axis and decrease this effect for reversing the electric fields, even counteract the Rashba spin-orbit coupling effect. It is very interesting to find that we may deduce the strength of the Rashba effect through this phenomenon. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The full spectra of magnetoplasmons and single-particle excitations are obtained of coupled one-dimensional electron gases in parallel semiconductor quantum wires with tunneling. We show the effects of the interwire Coulomb interaction and the tunneling, as well as the magnetic-field-induced localization on the elementary excitations in symmetric and asymmetric coulped quantum wire structures. The interacton and resonance between the plasmon and the intersubband single-particle excitations are found in magnetic fields.
Resumo:
Electron cyclotron resonance CR) measurements have been carried out in magnetic fields up to 32 T to study electron-phonon interaction in two heavily modulation-delta -doped GaAs/Al0.3Ga0.7As single-quantum-well samples. No measurable resonant magnetopolaron effects were observed in either sample in the region of the GaAs longitudinal optical (LO) phonons. However, when the CR frequency is above LO phonon frequency, omega (LO)=E-LO/(h) over bar, at high magnetic fields (B>27 T), electron CR exhibits a strong avoided-level-crossing splitting for both samples at frequencies close to (omega (LO)+ (E-2-E-1)1 (h) over bar, where E-2, and E-1 are the energies of the bottoms of the second and the first subbands, respectively. The energy separation between the two branches is large with the minimum separation of 40 cm(-1) occurring at around 30.5 T. A detailed theoretical analysis, which includes a self-consistent calculation of the band structure and the effects of electron-phonon interaction on the CR, shows that this type of splitting is due to a three-level resonance between the second Landau level of the first electron subband and the lowest Landau level of the second subband plus one GaAs LO phonon. The absence of occupation effects in the final states and weak screening or this three-level process yields large energy separation even in the presence of high electron densities. Excellent agreement between the theory and the experimental results is obtained.