998 resultados para ELECTRICAL SPIN INJECTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the proposal of a three phase current source shunt active power filter (CS-SAPF) with photovoltaic grid interface. The proposed system combines the compensation of reactive power and harmonics with the injection of energy from a solar photovoltaic array into the electrical power grid. The proposed equipment presents the advantage of giving good use to the current source inverter, even when the solar photovoltaic array is not producing energy. The paper describes the control system of the CS SAPF, the energy injection control strategy, and the current harmonics and power factor compensation strategy. Simulation results to assess the performance of the proposed system are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Marketing e Estratégia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A measurement of spin correlation in tt¯ production is presented using data collected with the ATLAS detector at the Large Hadron Collider in proton-proton collisions at a center-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 20.3 fb−1. The correlation between the top and antitop quark spins is extracted from dilepton tt¯ events by using the difference in azimuthal angle between the two charged leptons in the laboratory frame. In the helicity basis the measured degree of correlation corresponds to Ahelicity=0.38±0.04, in agreement with the Standard Model prediction. A search is performed for pair production of top squarks with masses close to the top quark mass decaying to predominantly right-handed top quarks and a light neutralino, the lightest supersymmetric particle. Top squarks with masses between the top quark mass and 191 GeV are excluded at the 95% confidence level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the fact that different injection molding conditions tailor the mechanical response of the thermoplastic material, such effect must be considered earlier in the product development process. The existing approaches implemented in different commercial software solutions are very limited in their capabilities to estimate the influence of processing conditions on the mechanical properties. Thus, the accuracy of predictive simulations could be improved. In this study, we demonstrate how to establish straightforward processing-impact property relationships of talc-filled injection-molded polypropylene disc-shaped parts by assessing the thermomechanical environment (TME). To investigate the relationship between impact properties and the key operative variables (flow rate, melt and mold temperature, and holding pressure), the design of experiments approach was applied to systematically vary the TME of molded samples. The TME is characterized on computer flow simulation outputsanddefined bytwo thermomechanical indices (TMI): the cooling index (CI; associated to the core features) and the thermo-stress index (TSI; related to the skin features). The TMI methodology coupled to an integrated simulation program has been developed as a tool to predict the impact response. The dynamic impact properties (peak force, peak energy, and puncture energy) were evaluated using instrumented falling weight impact tests and were all found to be similarly affected by the imposed TME. The most important molding parameters affecting the impact properties were found to be the processing temperatures (melt andmold). CI revealed greater importance for the impact response than TSI. The developed integrative tool provided truthful predictions for the envisaged impact properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present the thermal characterization of the full scope of polyhydroxyalcanoate and poly(lactic acid) blends obtain by injection molding. Blends of polyhydroxyalcanoate and poly(lactic acid) (PHA/PLA) were prepared in different compositions ranging from 0–100% in steps of 10%. The blends were injection molded and then characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The increment of PHA fraction increased the degree of crystallinity of the blend and the miscibility of the base polymers as verified by the Fox model. The WAXD analysis indicates that the presence of PHA hindered the PLA crystallization. The crystallization evolution trough PHA weight fraction (wf) shows a phase inversion around 50-60%. SEM analyses confirmed that the miscibility of PHA/PLA blends increased with the incorporation of PHA and became total for values of PHA higher that 50%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interesting properties of thermoplastics elastomers can be combined with carbon nanotubes (CNT) for the development of large strain piezoresistive composites for sensor applications. Piezoresistive properties of the composites depend on CNT content, with the gauge factor increasing for concentrations around the percolation threshold, mechanical and electrical hysteresis. The SBS copolymer composition (butadiene/styrene ratio) influences the mechanical and electrical hysteresis of composites and, therefore, the piezoresistive response. This work reports on the electrical and mechanical response of CNT/SBS composites with 4%wt nanofiller content, due to the larger electromechanical response. C401 and C540 SBS copolymers with 80% and 60% butadiene content, respectively have been selected. The copolymer with larger amount of soft phase (C401) shows a rubber-like mechanical behavior, with mechanical hysteresis increasing linearly with strain until 100% strain. The copolymer with the larger amount of hard phase (C540) just shows rubber-like behavior for low strains. The piezoresistive sensibility is similar for both composites for low strains, with a GF≈ 5 for 5% strain. The electrical hysteresis shows opposite behavior than the mechanical hysteresis, increasing with strain for both composites, but with higher increase for softer copolymer, C401. The GF increases with increasing strain, but this increase is larger for composites with lower amounts of soft phase due to the distinct initial modulus and deformation of the soft and hard phases of the copolymer. The soft phase shows larger strain under a given stress than the harder phase and the conductive pathway rearrangements in the composites are different for both phases, the harder copolymer (C540) showing higher piezoresistive sensibility, GF≈ 18, for 20% strain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different metal-ion exchanged NaY zeolite, Na(M)Y, were used to prepare poly(vinylidene fluoride) based composites by solvent casting and melting crystallization. The effect of different metal ion-exchanged zeolites on polymer crystallization and electrical properties was reported. Cation-framework interactions and hydration energy of the cations determined that K+ is the most efficient exchanged ion in NaY zeolite, followed by Cs+ and Li+. The electroactive phase crystallization strongly depends on the ions present in the zeolite, leading to variations of the surface energy characteristics of the Na(M)Y zeolites and the polymer chain ability of penetration in the zeolite. Thus, Na(Li)Y and NaY induces the complete electroactive -phase crystallization of the crystalline phase of PVDF, while Na(K)Y only induces it partly and Na(Cs)Y is not able to promote the crystallization of the electroactive phase. Furthermore, different ion size/weigh and different interaction with the zeolite framework results in significant variations in the electrical response of the composite. In this way, iinterfacial polarization effects in the zeolite cavities and zeolite-polymer interface, leads to strong increases of the dielectric constant on the composites with lightest ions weakly bound to the zeolite framework. Polymer composite with Na(Li)Y show the highest dielectric response, followed by NaY and Na(K)Y. Zeolite Na(Cs)Y contribute to a decrease of the dielectric constant of the composite. The results show the relevance of the materials for sensor development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermoplastic elastomers based on a triblock copolymer styrene-butadiene-styrene (SBS) with different butadiene/styrene ratios, block structure and carbon nanotube (CNT) content were submitted to accelerated weathering in a Xenontest set up, in order to evaluate their stability to UV ageing. It was concluded that ageing mainly depends on butadiene/styrene ratio and block structure, with radial block structures exhibiting a faster ageing than linear block structures. Moreover, the presence of carbon nanotubes in the SBS copolymer slows down the ageing of the copolymer. The evaluation of the influence of ageing on the mechanical and electrical properties demonstrates that the mechanical degradation is higher for the C401 sample, which is the SBS sample with the largest butadiene content and a radial block structure. On the other hand, a copolymer derivate from SBS, the styrene-ethylene/butadiene-styrene (SEBS) sample, retains a maximum deformation of ~1000% after 80 h of accelerated ageing. The hydrophobicity of the samples decreases with increasing ageing time, the effect being larger for the samples with higher butadiene content. It is also verified that cytotoxicity increases with increasing UV ageing with the exception of SEBS, which remains not cytotoxic up to 80 h of accelerated ageing time, demonstrating its potential for applications involving exposition to environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of the spin and parity quantum numbers of the Higgs boson in the WW∗→eνμν final state are presented, based on proton--proton collision data collected by the ATLAS detector at the Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb−1 at a centre-of-mass energy of s√=8 TeV. The Standard Model spin-parity JCP=0++ hypothesis is compared with alternative hypotheses for both spin and CP. The case where the observed resonance is a mixture of the Standard-Model-like Higgs boson and CP-even (JCP=0++) or CP-odd (JCP=0+−) Higgs boson in scenarios beyond the Standard Model is also studied. The data are found to be consistent with the Standard Model prediction and limits are placed on alternative spin and CP hypotheses, including CP mixing in different scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is intended to evaluate the density and the mechanical, acoustic and thermal properties of compression moulded plates composed of granulate from electrical cables wastes. Those cable wastes are the insulation part from the electric cables, and are composed of PVC, PE, EMP and PEX rubber. After these materiais lose their initial properties and cease to be useful as insulation material, due to safety requirements, it is possible to reuse them into new applications like industrial or playground floorings, as sound insulation material to be applied in walls or floors, or to dampen vibrations from equipments. Recovering electric cable waste has been a major concern to the European Commission due to its leveis of toxicity when incineration and land fill ing is the solution to dispose this material. Such as the European Commission's study for DG Xl[1] suggested that recycling may be the most favourable future waste management option.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Body composition analysis is relevant to characterize the nutritional requirements and finishing phase of fish. The aim of this study was to investigate the relationship between ichthyometric (weight, total and standard length, density and yields), bromatological (fat, protein, ash and water content) and bioelectrical-impedance-analysis (BIA) (resistance, reactance, phase angle and composition indexes) variables in the hybrid tambatinga (Colossoma macropomum × Piaractus brachypomus). In a non-fertilized vivarium, 520 juveniles were housed and fed commercial rations. Then, 136 days after hatching (DAH), 15 fish with an average weight of 37.69 g and average total length of 12.96 cm were randomly chosen, anesthetized (eugenol) and subjected to the first of fourteen fortnightly assessments (BIA and biometry). After euthanasia, the following parts were weighed: whole carcass with the head, fillet, and skin (WC); fillet with skin (FS); and the remainder of the carcass with the head (CH). Together, FS and CH were ground and homogenized for the bromatological analyses. Estimates of the body composition and yields of tambatinga, with models including ichthyometric and BIA variables, showed correlation coefficients ranging from 0.81 (for the FS yield) to 1,00 (for the total ash). Similarly, models that included only BIA variables had correlation coefficients ranging from 0.81 (FS and CH yields) to 0.98 (for the total ash). Therefore, in tambatinga, the BIA technique allows the estimation of the yield of the fillet with skin and the body composition (water content, fat, ash, and protein). The best models combine ichthyometric and BIA variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents ζτ(k) controlling the singularities for both the longitudinal  and transverse (τ = t) dynamical structure factors for the whole momentum range  , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whether at the zero spin density m = 0 and finite temperatures T > 0 the spin stiffness of the spin-1/2 XXX chain is finite or vanishes remains an unsolved and controversial issue, as different approaches yield contradictory results. Here we explicitly compute the stiffness at m = 0 and find strong evidence that it vanishes. In particular, we derive an upper bound on the stiffness within a canonical ensemble at any fixed value of spin density m that is proportional to m2L in the thermodynamic limit of chain length L → ∞, for any finite, nonzero temperature, which implies the absence of ballistic transport for T > 0 for m = 0. Although our method relies in part on the thermodynamic Bethe ansatz (TBA), it does not evaluate the stiffness through the second derivative of the TBA energy eigenvalues relative to a uniform vector potential. Moreover, we provide strong evidence that in the thermodynamic limit the upper bounds on the spin current and stiffness used in our derivation remain valid under string deviations. Our results also provide strong evidence that in the thermodynamic limit the TBA method used by X. Zotos [Phys. Rev. Lett. 82, 1764 (1999)] leads to the exact stiffness values at finite temperature T > 0 for models whose stiffness is finite at T = 0, similar to the spin stiffness of the spin-1/2 Heisenberg chain but unlike the charge stiffness of the half-filled 1D Hubbard model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified version of the metallic-phase pseudofermion dynamical theory (PDT) of the 1D Hubbard model is introduced for the spin dynamical correlation functions of the half-filled 1D Hubbard model Mott– Hubbard phase. The Mott–Hubbard insulator phase PDT is applied to the study of the model longitudinal and transverse spin dynamical structure factors at finite magnetic field h, focusing in particular on the sin- gularities at excitation energies in the vicinity of the lower thresholds. The relation of our theoretical results to both condensed-matter and ultra-cold atom systems is discussed.