946 resultados para Dynamic Flow Estimation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In general, vascular contributions to the in vivo magnetic resonance (MR) brain spectrum are too small to be relevant. In cerebral uptake studies, however, vascular contributions may constitute a major confounder. MR visibility of vascular Phe was investigated by recording localized spectra from fully oxygenated and well-mixed whole blood. Blood Phe levels determined by MR spectroscopy (MRS) and ion-exchange chromatography showed excellent correlation. In addition, effects of blood flow were shown to have a small effect on signal amplitude with the MRS methodology used. Hence, blood Phe is almost completely MR visible at 1.5 T, even though it is severely broadened at higher fields. Without appropriate correction, cerebral Phe influx in studies of brain Phe uptake in phenylketonuria patients or healthy subjects would appear to be faster and lead to higher levels. Similar effects are envisaged for studies of ethanol or glucose uptake across the blood-brain barrier.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The purpose of this study was to compare a standard peripheral end-hole angiocatheter with those modified with side holes or side slits using experimental optical techniques to qualitatively compare the contrast material exit jets and using numeric techniques to provide flow visualization and quantitative comparisons. MATERIALS AND METHODS: A Schlieren imaging system was used to visualize the angiocatheter exit jet fluid dynamics at two different flow rates. Catheters were modified by drilling through-and-through side holes or by cutting slits into the catheters. A commercial computational fluid dynamics package was used to calculate numeric results for various vessel diameters and catheter orientations. RESULTS: Experimental images showed that modifying standard peripheral IV angiocatheters with side holes or side slits qualitatively changed the overall flow field and caused the exiting jet to become less well defined. Numeric calculations showed that the addition of side holes or slits resulted in a 9-30% reduction of the velocity of contrast material exiting the end hole of the angiocatheter. With the catheter tip directed obliquely to the wall, the maximum wall shear stress was always highest for the unmodified catheter and was always lowest for the four-side-slit catheter. CONCLUSION: Modified angiocatheters may have the potential to reduce extravasation events in patients by reducing vessel wall shear stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today’s material flow systems for mass customization or dynamic productions are usually realized with manual transportation systems. However new concepts in the domain of material flow and device control like function-oriented modularization and intelligent multi-agent-systems offer the possibility to employ changeable and automated material flow systems in dynamic production structures. These systems need the ability to react on unplanned and unexpected events autonomously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial tracking is one of the most challenging and important parts of Mixed Reality environments. Many applications, especially in the domain of Augmented Reality, rely on the fusion of several tracking systems in order to optimize the overall performance. While the topic of spatial tracking sensor fusion has already seen considerable interest, most results only deal with the integration of carefully arranged setups as opposed to dynamic sensor fusion setups. A crucial prerequisite for correct sensor fusion is the temporal alignment of the tracking data from several sensors. Tracking sensors are typically encountered in Mixed Reality applications, are generally not synchronized. We present a general method to calibrate the temporal offset between different sensors by the Time Delay Estimation method which can be used to perform on-line temporal calibration. By applying Time Delay Estimation on the tracking data, we show that the temporal offset between generic Mixed Reality spatial tracking sensors can be calibrated. To show the correctness and the feasibility of this approach, we have examined different variations of our method and evaluated various combinations of tracking sensors. We furthermore integrated this time synchronization method into our UBITRACK Mixed Reality tracking framework to provide facilities for calibration and real-time data alignment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We provide statistical evidence of the effect of the solar wind dynamic pressure (Psw) on the northern winter and spring circulations. We find that the vertical structure of the Northern Annular Mode (NAM), the zonal mean circulation, and Eliassen-Palm (EP)-flux anomalies show a dynamically consistent pattern of downward propagation over a period of ~45 days in response to positive Psw anomalies. When the solar irradiance is high, the signature of Psw is marked by a positive NAM anomaly descending from the stratosphere to the surface during winter. When the solar irradiance is low, the Psw signal has the opposite sign, occurs in spring, and is confined to the stratosphere. The negative Psw signal in the NAM under low solar irradiance conditions is primarily governed by enhanced vertical EP-flux divergence and a warmer polar region. The winter Psw signal under high solar irradiance conditions is associated with positive anomalies of the horizontal EP-flux divergence at 55°N–75°N and negative anomalies at 25°N–45°N, which corresponds to the positive NAM anomaly. The EP-flux divergence anomalies occur ~15 days ahead of the mean-flow changes. A significant equatorward shift of synoptic-scale Rossby wave breaking (RWB) near the tropopause is detected during January–March, corresponding to increased anticyclonic RWB and a decrease in cyclonic RWB. We suggest that the barotropic instability associated with asymmetric ozone in the upper stratosphere and the baroclinic instability associated with the polar vortex in the middle and lower stratosphere play a critical role for the winter signal and its downward propagation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heart is a remarkable organ. In order to maintain its function, it remodels in response to a variety of environmental stresses, including pressure overload, volume overload, mechanical or pharmacological unloading and hormonal or metabolic disturbances. All these responses are linked to the inherent capacity of the heart to rebuild itself. Particularly, cardiac pressure overload activates signaling pathways of both protein synthesis and degradation. While much is known about regulators of protein synthesis, little is known about regulators of protein degradation in hypertrophy. The ubiquitin-proteasome system (UPS) selectively degrades unused and abnormal intracellular proteins. I speculated that the UPS may play an important role in both qualitative and quantitative changes in the composition of heart muscle during hypertrophic remodeling. My study hypothesized that cardiac remodeling in response to hypertrophic stimuli is a dynamic process that requires activation of highly regulated mechanisms of protein degradation as much as it requires protein synthesis. My first aim was to adopt a model of left ventricular hypertrophy and determine its gene expression and structural changes. Male Sprague-Dawley rats were submitted to ascending aortic banding and sacrificed at 7 and 14 days after surgery. Sham operated animals served as controls. Effective aortic banding was confirmed by hemodynamic assessment by Doppler flow measurements in vivo. Banded rats showed a four-fold increase in peak stenotic jet velocities. Histomorphometric analysis revealed a significant increase in myocyte size as well as fibrosis in the banded animals. Transcript analysis showed that banded animals had reverted to the fetal gene program. My second aim was to assess if the UPS is increased and transcriptionally regulated in hypertrophic left ventricular remodeling. Protein extracts from the left ventricles of the banded and control animals were used to perform an in vitro peptidase assay to assess the overall catalytic activity of the UPS. The results showed no difference between hypertrophied and control animals. Transcript analysis revealed decreases in transcript levels of candidate UPS genes in the hypertrophied hearts at 7 days post-banding but not at 14 days. However, protein expression analysis showed no difference at either time point compared to controls. These findings indicate that elements of the UPS are downregulated in the early phase of hypertrophic remodeling and normalizes in a later phase. The results provide evidence in support of a dynamic transcriptional regulation of a major pathway of intracellular protein degradation in the heart. The discrepancy between transcript levels on the one hand and protein levels on the other hand supports post-transcriptional regulation of the UPS pathway in the hypertrophied heart. The exact mechanisms and the functional consequences remain to be elucidated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several approaches for the non-invasive MRI-based measurement of the aortic pressure waveform over the heart cycle have been proposed in the last years. These methods are normally based on time-resolved, two-dimensional phase-contrast sequences with uni-directionally encoded velocities (2D PC-MRI). In contrast, three-dimensional acquisitions with tridirectional velocity encoding (4D PC-MRI) have been shown to be a suitable data source for detailed investigations of blood flow and spatial blood pressure maps. In order to avoid additional MR acquisitions, it would be advantageous if the aortic pressure waveform could also be computed from this particular form of MRI. Therefore, we propose an approach for the computation of the aortic pressure waveform which can be completely performed using 4D PC-MRI. After the application of a segmentation algorithm, the approach automatically computes the aortic pressure waveform without any manual steps. We show that our method agrees well with catheter measurements in an experimental phantom setup and produces physiologically realistic results in three healthy volunteers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present new interpretations of deglaciation in McMurdo Sound and the western Ross Sea, with observationally based reconstructions of interactions between East and West Antarctic ice at the last glacial maximum (LGM), 16 000, 12 000, 8000 and 4000 sp. At the LGM? East Antarctic ice from Mulock Glacier split, one branch turned westward south of Ross Island but the other branch rounded Ross Island before flowing southwest into McMurdo Sound. This flow regime, constrained by an ice saddle north of Ross Island, is consistent with the reconstruction of Stuiver and others (1981a). After the LGM, grounding-line retreat was most rapid in areas with greatest water depth, especially along the Victoria Land coast. By 12 000 sp, the ice-now regime in McMurdo Sound changed to through-flowing Mulock Glacier ice, with lesser contributions from Koettlitz, Blue and Ferrar Glaciers, because the former ice saddle north of Ross Island was replaced by a dome. The modern flew regime was established similar to 4000 BP. Ice derived from high elevations on the Polar Plateau but now stranded on the McMurdo Ice Shelf, and the pattern of the Transantarctic Mountains erratics support our reconstructions of Mulock Glacier ice rounding Minna Bluff but with all ice from Skelton Glacier ablating south of the bluff. They are inconsistent with Drewry's (1979) LGM reconstruction that includes Skelton Glacier ice in the McMurdo-Sound through-flow. Drewry's (1979) model closely approximates our results for 12 000-4000 BP. Ice-sheet modeling holds promise for determining whether deglaciation proceeded by grounding-line retreat of an ice sheet that was largely stagnant, because it never approached equilibrium flowline profiles after the Ross Ice Shelf, grounded, or of a dynamic ice sheet with flowline profiles kept low by active ice streams that extended northward from present-day outlet glaciers after the Ross Ice Shelf grounded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ore-forming and geoenviromental systems commonly involve coupled fluid flowand chemical reaction processes. The advanced numerical methods and computational modeling have become indispensable tools for simulating such processes in recent years. This enables many hitherto unsolvable geoscience problems to be addressed using numerical methods and computational modeling approaches. For example, computational modeling has been successfully used to solve ore-forming and mine site contamination/remediation problems, in which fluid flow and geochemical processes play important roles in the controlling dynamic mechanisms. The main purpose of this paper is to present a generalized overview of: (1) the various classes and models associated with fluid flow/chemically reacting systems in order to highlight possible opportunities and developments for the future; (2) some more general issues that need attention in the development of computational models and codes for simulating ore-forming and geoenviromental systems; (3) the related progresses achieved on the geochemical modeling over the past 50 years or so; (4) the general methodology for modeling of oreforming and geoenvironmental systems; and (5) the future development directions associated with modeling of ore-forming and geoenviromental systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract BACKGROUND: Pulse pressure variations (PPVs) and stroke volume variations (SVVs) are dynamic indices for predicting fluid responsiveness in intensive care unit patients. These hemodynamic markers underscore Frank-Starling law by which volume expansion increases cardiac output (CO). The aim of the present study was to evaluate the impact of the administration of catecholamines on PPV, SVV, and inferior vena cava flow (IVCF). METHODS: In this prospective, physiologic, animal study, hemodynamic parameters were measured in deeply sedated and mechanically ventilated pigs. Systemic hemodynamic and pressure-volume loops obtained by inferior vena cava occlusion were recorded. Measurements were collected during two conditions, that is, normovolemia and hypovolemia, generated by blood removal to obtain a mean arterial pressure value lower than 60 mm Hg. At each condition, CO, IVCF, SVV, and PPV were assessed by catheters and flow meters. Data were compared between the conditions normovolemia and hypovolemia before and after intravenous administrations of norepinephrine and epinephrine using a nonparametric Wilcoxon test. RESULTS: Eight pigs were anesthetized, mechanically ventilated, and equipped. Both norepinephrine and epinephrine significantly increased IVCF and decreased PPV and SVV, regardless of volemic conditions (p < 0.05). However, epinephrine was also able to significantly increase CO regardless of volemic conditions. CONCLUSION: The present study demonstrates that intravenous administrations of norepinephrine and epinephrine increase IVCF, whatever the volemic conditions are. The concomitant decreases in PPV and SVV corroborate the fact that catecholamine administration recruits unstressed blood volume. In this regard, understanding a decrease in PPV and SVV values, after catecholamine administration, as an obvious indication of a restored volemia could be an outright misinterpretation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an application and sample independent method for the automatic discrimination of noise and signal in optical coherence tomography Bscans. The proposed algorithm models the observed noise probabilistically and allows for a dynamic determination of image noise parameters and the choice of appropriate image rendering parameters. This overcomes the observer variability and the need for a priori information about the content of sample images, both of which are challenging to estimate systematically with current systems. As such, our approach has the advantage of automatically determining crucial parameters for evaluating rendered image quality in a systematic and task independent way. We tested our algorithm on data from four different biological and nonbiological samples (index finger, lemon slices, sticky tape, and detector cards) acquired with three different experimental spectral domain optical coherence tomography (OCT) measurement systems including a swept source OCT. The results are compared to parameters determined manually by four experienced OCT users. Overall, our algorithm works reliably regardless of which system and sample are used and estimates noise parameters in all cases within the confidence interval of those found by observers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a noninvasive technique for quantitative assessment of the integrity of blood-brain barrier and blood-spinal cord barrier (BSCB) in the presence of central nervous system pathologies. However, the results of DCE-MRI show substantial variability. The high variability can be caused by a number of factors including inaccurate T1 estimation, insufficient temporal resolution and poor contrast-to-noise ratio. My thesis work is to develop improved methods to reduce the variability of DCE-MRI results. To obtain fast and accurate T1 map, the Look-Locker acquisition technique was implemented with a novel and truly centric k-space segmentation scheme. In addition, an original multi-step curve fitting procedure was developed to increase the accuracy of T1 estimation. A view sharing acquisition method was implemented to increase temporal resolution, and a novel normalization method was introduced to reduce image artifacts. Finally, a new clustering algorithm was developed to reduce apparent noise in the DCE-MRI data. The performance of these proposed methods was verified by simulations and phantom studies. As part of this work, the proposed techniques were applied to an in vivo DCE-MRI study of experimental spinal cord injury (SCI). These methods have shown robust results and allow quantitative assessment of regions with very low vascular permeability. In conclusion, applications of the improved DCE-MRI acquisition and analysis methods developed in this thesis work can improve the accuracy of the DCE-MRI results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was the estimation of current and potential water erosion rates in Castellon Province (Spain) using RUSLE3D (Revised Universal Soil Loss Equation-3D) model with Geographical Information System (GIS) support. RUSLE3D uses a new methodology for topographic factor estimation (LS factor) based on the impact of flow convergence allowing better assessment of sediment distribution detached by water erosion. In RUSLE3D equation, the effect that vegetation cover has on soil erosion rate is reflected by the C factor. Potential erosion indicates soil erosion rate without considering C factor in RUSLE3D equation. The results showed that 57% of estimated current erosion does not exceed 10 t/ha.year (low erosion). In the case of potential erosion rates, 5% of the area of Castellon Province does not exceed 10 t/ha.year but 55% exceed 200 t/ha.year. Based on these results, the current vegetation cover of Castellon Province is adequate but needs to be conserved to avoid an increase in the current soil erosion rates as shown by potential erosion rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use a multiproxy approach to monitor changes in the vertical profile of the Indonesian Throughflow as well as monsoonal wind and precipitation patterns in the Timor Sea on glacial-interglacial, precessional, and suborbital timescales. We focus on an interval of extreme climate change and sea level variation: marine isotope (MIS) 6 to MIS 5e. Paleoproductivity fluctuations in the Timor Sea follow a precessional beat related to the intensity of the Australian (NW) monsoon. Paired Mg/Ca and d18O measurements of surface- and thermocline-dwelling planktonic foraminifers (G. ruber and P. obliquiloculata) indicate an increase of >4°C in both surface and thermocline water temperatures during Termination II. Tropical sea surface temperature changed synchronously with ice volume (benthic d18O) during deglaciation, implying a direct coupling of high- and low-latitude climate via atmospheric and/or upper ocean circulation. Substantial cooling and freshening of thermocline waters occurred toward the end of Termination II and during MIS 5e, indicating a change in the vertical profile of the Indonesian Throughflow from surface- to thermocline-dominated flow.