923 resultados para Direct method
Resumo:
McArdle disease is a metabolic disorder caused by pathogenic mutations in the PYGM gene. Timely diagnosis can sometimes be difficult with direct genomic analysis, which requires additional studies of cDNA from muscle transcripts. Although the "nonsense-mediated mRNA decay" (NMD) eliminates tissue-specific aberrant transcripts, there is some residual transcription of tissue-specific genes in virtually all cells, such as peripheral blood mononuclear cells (PBMCs).We studied a subset of the main types of PYGM mutations (deletions, missense, nonsense, silent, or splicing mutations) in cDNA from easily accessible cells (PBMCs) in 12 McArdle patients.Analysis of cDNA from PBMCs allowed detection of all mutations. Importantly, the effects of mutations with unknown pathogenicity (silent and splicing mutations) were characterized in PBMCs. Because the NMD mechanism does not seem to operate in nonspecific cells, PBMCs were more suitable than muscle biopsies for detecting the pathogenicity of some PYGM mutations, notably the silent mutation c.645G>A (p.K215=), whose effect in the splicing of intron 6 was unnoticed in previous muscle transcriptomic studies.We propose considering the use of PBMCs for detecting mutations that are thought to cause McArdle disease, particularly for studying their actual pathogenicity.
Resumo:
Genes can maintain spatiotemporal expression patterns by long-range interactions between cis-acting elements. The cystic fibrosis transmembrane conductance regulator gene (CFTR) is expressed primarily in epithelial cells. An element located within a DNase I-hypersensitive site (DHS) 10 kb into the first intron was previously shown to augment CFTR promoter activity in a tissue-specific manner. Here, we reveal the mechanism by which this element influences CFTR transcription. We employed a high-resolution method of mapping DHS using tiled microarrays to accurately locate the intron 1 DHS. Transfection of promoter-reporter constructs demonstrated that the element displays classical tissue-specific enhancer properties and can independently recruit factors necessary for transcription initiation. In vitro DNase I footprinting analysis identified a protected region that corresponds to a conserved, predicted binding site for hepatocyte nuclear factor 1 (HNF1). We demonstrate by electromobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP) that HNF1 binds to this element both in vitro and in vivo. Moreover, using chromosome conformation capture (3C) analysis, we show that this element interacts with the CFTR promoter in CFTR-expressing cells. These data provide the first insight into the three- dimensional (3D) structure of the CFTR locus and confirm the contribution of intronic cis-acting elements to the regulation of CFTR gene expression.
Resumo:
A vertex-based finite volume (FV) method is presented for the computational solution of quasi-static solid mechanics problems involving material non-linearity and infinitesimal strains. The problems are analysed numerically with fully unstructured meshes that consist of a variety of two- and threedimensional element types. A detailed comparison between the vertex-based FV and the standard Galerkin FE methods is provided with regard to discretization, solution accuracy and computational efficiency. For some problem classes a direct equivalence of the two methods is demonstrated, both theoretically and numerically. However, for other problems some interesting advantages and disadvantages of the FV formulation over the Galerkin FE method are highlighted.
Resumo:
Sound waves are propagating pressure fluctuations and are typically several orders of magnitude smaller than the pressure variations in the flow field that account for flow acceleration. On the other hand, these fluctuations travel at the speed of sound in the medium, not as a transported fluid quantity. Due to the above two properties, the Reynolds averaged Navier-Stokes (RANS) equations do not resolve the acoustic fluctuations. Direct numerical simulation of turbulent flow is still a prohibitively expensive tool to perform noise analysis. This paper proposes the acousticcorrectionmethod, an alternative and affordable tool based on a modified defect correction concept, which leads to an efficient algorithm for computational aeroacoustics and noise analysis.
Resumo:
Acartia and Paracartia species, often known to co-occur, can exhibit complex life cycles, including the production of resting eggs. Studying and understanding their population dynamics is hindered by the inability to identify eggs and early developmental stages using morphological techniques. We have developed a simple molecular technique to distinguish between the three species of the Acartiidae family (Acartia clausi, A. discaudata and Paracartia grani) that co-occur in the Thau lagoon (43�250N; 03�400E) in southern France. Direct amplification of a partial region of the mitochondrial cytochrome oxidase I gene by polymerase chain reaction and subsequent restriction fragment length polymorphism results in a unique restriction profile for each species. The technique is capable of determining the identity of individual eggs, including resting eggs retrieved from sediment samples, illustrating its application in facilitating population dynamic studies of this ubiquitous and important member of the zooplankton community.
Resumo:
This paper describes the development of a two-dimensional transient catalyst model. Although designed primarily for two-stroke direct injection engines, the model is also applicable to four-stroke lean burn and diesel applications. The first section describes the geometries, properties and chemical processes simulated by the model and discusses the limitations and assumptions applied. A review of the modeling techniques adopted by other researchers is also included. The mathematical relationships which are used to represent the system are then described, together with the finite volume method used in the computer program. The need for a two-dimensional approach is explained and the methods used to model effects such as flow and temperature distribution are presented. The problems associated with developing surface reaction rates are discussed in detail and compared with published research. Validation and calibration of the model is achieved by comparing predictions with measurements from a flow reactor. While an extensive validation process, involving detailed measurements of gas composition and thermal gradients, has been completed, the analysis is too detailed for publication here and is the subject of a separate technical paper.
Resumo:
The need to integrate cost into the early product definition process as an engineering parameter is addressed. The application studied is a fuselage panel that is typical for commercial transport regional jets. Consequently, a semi-empirical numerical analysis using reference data was coupled to model the structural integrity of thin-walled structures with regard to material failure and buckling: skin, stringer, flexural, and interrivet. The optimization process focuses on direct operating cost (DOC) as a function of acquisition cost and fuel burn. It was found that the ratio of acquisition cost to fuel burn was typically 4:3 and that there was a 10% improvement in the DOC for the minimal DOC condition over the minimal weight condition because of the manufacturing cost saving from having a reduced number of larger-area stringers and a slightly thicker skin than that preferred by the minimal weight condition. Also note that the minimal manufacturing cost condition was slightly better than the minimal weight condition, which highlights the key finding: The traditional minimal weight condition is a dated and suboptimal approach to airframe structural design.
Resumo:
Here a self-consistent one-dimensional continuum model is presented for a narrow gap plane-parallel dc glow discharge. The governing equations consist of continuity and momentum equations for positive and negative ions and electrons coupled with Poisson's equation. A singular perturbation method is developed for the analysis of high pressure dc glow discharge. The kinetic processes of the ionization, electron attachment, and ion-ion recombination are included in the model. Explicit results are obtained for the asymptotic limits: delta=(r(D)/L)(2)--> 0, omega=(r(S)/L)(2)--> 0, where r(D) is the Debye radius, r(S) is recombination length, and L is the gap length. The discharge gap divides naturally into four layers with multiple space scales: anode fall region, positive column, transitional region, cathode fall region and diffusion layer adjacent to the cathode surface, its formation is discussed. The effects of the gas pressure, gap spacing and dc voltage on the electrical properties of the layers and its dimension are investigated. (C) 2000 American Institute of Physics. [S0021-8979(00)00813-6].
Resumo:
Electrodeposition of metals onto conductive supports such as graphite potentially provides a lower-waste method to form heterogeneous catalysts than the standard methods such as wet impregnation. Copper electrodeposition onto pressed graphite disc electrodes was investigated from aqueous CuSO4-ethylenediamine solutions by chronoamperometry with scanning electron microscopy used to ascertain the particle sizes obtained by this method. The particle size was studied as a function of pH, CuSO4-ethylenediamine concentration, and electrodeposition time. It was observed that decreasing the pH, copper-ethylenediamine concentration and time each decreased the size of the copper particles observed, with the smallest obtained being around 5-20 nm. Furthermore, electroless aerobic oxidation of copper metal in the presence of ethylenediamine was successfully coupled with the electrodeposition in the same vessel. In this way, deposition was achieved sequentially on up to twenty different graphite discs using the same ethylenediamine solution, demonstrating the recyclability of the ligand. The materials thus prepared were shown to be catalytically active for the mineralisation of phenol by hydrogen peroxide. Overall, the results provide a proof-of-principle that by making use of aerobic oxidation coupled with electrochemical deposition, elemental base metals can be used directly as starting materials to form heterogeneous catalysts without the need to use metal salts as catalyst precursors.
Resumo:
The generation of induced pluripotent stem (iPS) cells is an important tool for regenerative medicine. However, the main restriction is the risk of tumor development. In this study we found that during the early stages of somatic cell reprogramming toward a pluripotent state, specific gene expression patterns are altered. Therefore, we developed a method to generate partial-iPS (PiPS) cells by transferring four reprogramming factors (OCT4, SOX2, KLF4, and c-MYC) to human fibroblasts for 4 d. PiPS cells did not form tumors in vivo and clearly displayed the potential to differentiate into endothelial cells (ECs) in response to defined media and culture conditions. To clarify the mechanism of PiPS cell differentiation into ECs, SET translocation (myeloid leukemia-associated) (SET) similar protein (SETSIP) was indentified to be induced during somatic cell reprogramming. Importantly, when PiPS cells were treated with VEGF, SETSIP was translocated to the cell nucleus, directly bound to the VE-cadherin promoter, increasing vascular endothelial-cadherin (VE-cadherin) expression levels and EC differentiation. Functionally, PiPS-ECs improved neovascularization and blood flow recovery in a hindlimb ischemic model. Furthermore, PiPS-ECs displayed good attachment, stabilization, patency, and typical vascular structure when seeded on decellularized vessel scaffolds. These findings indicate that reprogramming of fibroblasts into ECs via SETSIP and VEGF has a potential clinical application.
Resumo:
A direct-assembly method to construct three-dimensional (3D) plasmonic nanostructures yields porous plasmonic rolls through the strain-induced self-rolling up of two-dimensional metallic nanopore films. This route is scalable to different hole sizes and film thicknesses, and applicable to a variety of materials, providing general routes towards a diverse family of 3D metamaterials with nano-engineerable optical properties. These plasmonic rolls can be dynamically driven by light irradiation, rolling or unrolling with increasing or decreasing light intensity. Such dynamically controllable 3D plasmonic nanostructures offer opportunities both for sensing and feedback in active nano-actuators. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4711923]
Resumo:
A novel tubular cell structure for a direct methanol fuel cell (DMFC) is proposed based on a tubular Ti mesh and a Ti mesh anode. A dip coating method has been developed to fabricate the cell. The characterization of the tubular MEA has been analyzed by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), half cell and single cell testing. The tubular DMFC single cell comprises: a Ti mesh, a cathode diffusion layer and catalyst layer, a Nafion recast membrane and a PtRuO/Ti anode. Half cell tests show that the optimum catalyst loading, Ru/(Ru + Pt) atomic ratio and the Nafion loading of a PtRuO/Ti mesh anode are: 4 mg cm, 38% and 0.6 mg cm, respectively. Single cell tests show that the Nafion loading of the recast Nafion membrane and the concentration of the methanol in the electrolyte have a major influence on cell performance. © 2006 Elsevier B.V. All rights reserved.
Resumo:
A novel tubular cathode for the direct methanol fuel cell (DMFC) is proposed, based on a tubular titanium mesh. A dip-coating method has been developed for its fabrication. The tubular cathode is composed of titanium mesh, a cathode diffusion layer, a catalyst layer, and a recast Nafion® film. The titanium mesh is present at the inner circumference of the diffusion layer, while the recast Nafion® film is at the outer circumference of the catalyst layer. A DMFC single cell with a 3.5 mgPt cm tubular cathode was able to perform as well, in terms of power density, as a conventional planar DMFC. A peak power density of 9 mW cm was reached under atmospheric air at 25 °C. © 2006 WILEY-VCH Verlag GmbH & Co. KGaA.
Resumo:
The finite difference time domain (FDTD) method has direct applications in musical instrument modeling, simulation of environmental acoustics, room acoustics and sound reproduction paradigms, all of which benefit from auralization. However, rendering binaural impulse responses from simulated
data is not straightforward to accomplish as the calculated pressure at FDTD grid nodes does not contain any directional information. This paper addresses this issue by introducing a spherical array to capture sound pressure on a finite difference grid, and decomposing it into a plane-wave density
function. Binaural impulse responses are then constructed in the spherical harmonics domain by combining the decomposed grid data with free field head-related transfer functions. The effects of designing a spherical array in a Cartesian grid are studied, and emphasis is given to the relationships
between array sampling and the spatial and spectral design parameters of several finite-difference
schemes.
Resumo:
In recent years, there has been a move towards the development of indirect structural health monitoring (SHM)techniques for bridges; the low-cost vibration-based method presented in this paper is such an approach. It consists of the use of a moving vehicle fitted with accelerometers on its axles and incorporates wavelet analysis and statistical pattern recognition. The aim of the approach is to both detect and locate damage in bridges while reducing the need for direct instrumentation of the bridge. In theoretical simulations, a simplified vehicle-bridge interaction model is used to investigate the effectiveness of the approach in detecting damage in a bridge from vehicle accelerations. For this purpose, the accelerations are processed using a continuous wavelet transform as when the axle passes over a damaged section, any discontinuity in the signal would affect the wavelet coefficients. Based on these coefficients, a damage indicator is formulated which can distinguish between different damage levels. However, it is found to be difficult to quantify damage of varying levels when the vehicle’s transverse position is varied between bridge crossings. In a real bridge field experiment, damage was applied artificially to a steel truss bridge to test the effectiveness of the indirect approach in practice; for this purpose a two-axle van was driven across the bridge at constant speed. Both bridge and vehicle acceleration measurements were recorded. The dynamic properties of the test vehicle were identified initially via free vibration tests. It was found that the resulting damage indicators for the bridge and vehicle showed similar patterns, however, it was difficult to distinguish between different artificial damage scenarios.