878 resultados para Depth Estimation,Deep Learning,Disparity Estimation,Computer Vision,Stereo Vision


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents an analysis of the behavior of some algorithms usually available in stereo correspondence literature, with full HD images (1920x1080 pixels) to establish, within the precision dilemma versus runtime applications which these methods can be better used. The images are obtained by a system composed of a stereo camera coupled to a computer via a capture board. The OpenCV library is used for computer vision operations and processing images involved. The algorithms discussed are an overall method of search for matching blocks with the Sum of the Absolute Value of the difference (Sum of Absolute Differences - SAD), a global technique based on cutting energy graph cuts, and a so-called matching technique semi -global. The criteria for analysis are processing time, the consumption of heap memory and the mean absolute error of disparity maps generated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, we introduce DeReEs-4v, an algorithm for unsupervised and automatic registration of two video frames captured depth-sensing cameras. DeReEs-4V receives two RGBD video streams from two depth-sensing cameras arbitrary located in an indoor space that share a minimum amount of 25% overlap between their captured scenes. The motivation of this research is to employ multiple depth-sensing cameras to enlarge the field of view and acquire a more complete and accurate 3D information of the environment. A typical way to combine multiple views from different cameras is through manual calibration. However, this process is time-consuming and may require some technical knowledge. Moreover, calibration has to be repeated when the location or position of the cameras change. In this research, we demonstrate how DeReEs-4V registration can be used to find the transformation of the view of one camera with respect to the other at interactive rates. Our algorithm automatically finds the 3D transformation to match the views from two cameras, requires no human interference, and is robust to camera movements while capturing. To validate this approach, a thorough examination of the system performance under different scenarios is presented. The system presented here supports any application that might benefit from the wider field-of-view provided by the combined scene from both cameras, including applications in 3D telepresence, gaming, people tracking, videoconferencing and computer vision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il riconoscimento delle gesture è un tema di ricerca che sta acquisendo sempre più popolarità, specialmente negli ultimi anni, grazie ai progressi tecnologici dei dispositivi embedded e dei sensori. Lo scopo di questa tesi è quello di utilizzare alcune tecniche di machine learning per realizzare un sistema in grado di riconoscere e classificare in tempo reale i gesti delle mani, a partire dai segnali mioelettrici (EMG) prodotti dai muscoli. Inoltre, per consentire il riconoscimento di movimenti spaziali complessi, verranno elaborati anche segnali di tipo inerziale, provenienti da una Inertial Measurement Unit (IMU) provvista di accelerometro, giroscopio e magnetometro. La prima parte della tesi, oltre ad offrire una panoramica sui dispositivi wearable e sui sensori, si occuperà di analizzare alcune tecniche per la classificazione di sequenze temporali, evidenziandone vantaggi e svantaggi. In particolare, verranno considerati approcci basati su Dynamic Time Warping (DTW), Hidden Markov Models (HMM), e reti neurali ricorrenti (RNN) di tipo Long Short-Term Memory (LSTM), che rappresentano una delle ultime evoluzioni nel campo del deep learning. La seconda parte, invece, riguarderà il progetto vero e proprio. Verrà impiegato il dispositivo wearable Myo di Thalmic Labs come caso di studio, e saranno applicate nel dettaglio le tecniche basate su DTW e HMM per progettare e realizzare un framework in grado di eseguire il riconoscimento real-time di gesture. Il capitolo finale mostrerà i risultati ottenuti (fornendo anche un confronto tra le tecniche analizzate), sia per la classificazione di gesture isolate che per il riconoscimento in tempo reale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo scopo della tesi è creare un’architettura in FPGA in grado di ricavare informazioni 3D da una coppia di sensori stereo. La pipeline è stata realizzata utilizzando il System-on-Chip Zynq, che permette una stretta interazione tra la parte hardware realizzata in FPGA e la CPU. Dopo uno studio preliminare degli strumenti hardware e software, è stata realizzata l’architettura base per la scrittura e la lettura di immagini nella memoria DDR dello Zynq. In seguito l’attenzione si è spostata sull’implementazione di algoritmi stereo (rettificazione e stereo matching) su FPGA e nella realizzazione di una pipeline in grado di ricavare accurate mappe di disparità in tempo reale acquisendo le immagini da una camera stereo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photometric Stereo is a powerful image based 3D reconstruction technique that has recently been used to obtain very high quality reconstructions. However, in its classic form, Photometric Stereo suffers from two main limitations: Firstly, one needs to obtain images of the 3D scene under multiple different illuminations. As a result the 3D scene needs to remain static during illumination changes, which prohibits the reconstruction of deforming objects. Secondly, the images obtained must be from a single viewpoint. This leads to depth-map based 2.5 reconstructions, instead of full 3D surfaces. The aim of this Chapter is to show how these limitations can be alleviated, leading to the derivation of two practical 3D acquisition systems: The first one, based on the powerful Coloured Light Photometric Stereo method can be used to reconstruct moving objects such as cloth or human faces. The second, permits the complete 3D reconstruction of challenging objects such as porcelain vases. In addition to algorithmic details, the Chapter pays attention to practical issues such as setup calibration, detection and correction of self and cast shadows. We provide several evaluation experiments as well as reconstruction results. © 2010 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within Canada there are more than 2.5 million bundles of spent nuclear fuel with another approximately 2 million bundles to be generated in the future. Canada, and every country around the world that has taken a decision on management of spent nuclear fuel, has decided on long-term containment and isolation of the fuel within a deep geological repository. At depth, a deep geological repository consists of a network of placement rooms where the bundles will be located within a multi-layered system that incorporates engineered and natural barriers. The barriers will be placed in a complex thermal-hydraulic-mechanical-chemical-biological (THMCB) environment. A large database of material properties for all components in the repository are required to construct representative models. Within the repository, the sealing materials will experience elevated temperatures due to the thermal gradient produced by radioactive decay heat from the waste inside the container. Furthermore, high porewater pressure due to the depth of repository along with possibility of elevated salinity of groundwater would cause the bentonite-based materials to be under transient hydraulic conditions. Therefore it is crucial to characterize the sealing materials over a wide range of thermal-hydraulic conditions. A comprehensive experimental program has been conducted to measure properties (mainly focused on thermal properties) of all sealing materials involved in Mark II concept at plausible thermal-hydraulic conditions. The thermal response of Canada’s concept for a deep geological repository has been modelled using experimentally measured thermal properties. Plausible scenarios are defined and the effects of these scenarios are examined on the container surface temperature as well as the surrounding geosphere to assess whether they meet design criteria for the cases studied. The thermal response shows that if all the materials even being at dried condition, repository still performs acceptably as long as sealing materials remain in contact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shape-based registration methods frequently encounters in the domains of computer vision, image processing and medical imaging. The registration problem is to find an optimal transformation/mapping between sets of rigid or nonrigid objects and to automatically solve for correspondences. In this paper we present a comparison of two different probabilistic methods, the entropy and the growing neural gas network (GNG), as general feature-based registration algorithms. Using entropy shape modelling is performed by connecting the point sets with the highest probability of curvature information, while with GNG the points sets are connected using nearest-neighbour relationships derived from competitive hebbian learning. In order to compare performances we use different levels of shape deformation starting with a simple shape 2D MRI brain ventricles and moving to more complicated shapes like hands. Results both quantitatively and qualitatively are given for both sets.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficiency of lecturing or large group teaching has been called into question for many years. An abundance of literature details the components of effective teaching which are not provided in the traditional lecture setting, with many alternative methods of teaching recommended. However, with continued constraints on resources large group teaching is here to stay and student’s expect and are familiar with this method.

Technology Enhanced Learning may be the way forward, to prevent educators from “throwing out the baby with the bath water”. TEL could help Educator’s especially in the area of life sciences which is often taught by lectures to engage and involve students in their learning, provide feedback and incorporate the “quality” of small group teaching, case studies and Enquiry Based Learning into the large group setting thus promoting effective and deep learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]In this paper, a basic conceptual architecture aimed at the design of Computer Vision System is qualitatively described. The proposed architecture addresses the design of vision systems in a modular fashion using modules with three distinct units or components: a processing network or diagnostics unit, a control unit and a communications unit. The control of the system at the modules level is designed based on a Discrete Events Model. This basic methodology has been used to design a realtime active vision system for detection, tracking and recognition of people. It is made up of three functional modules aimed at the detection, tracking, recognition of moving individuals plus a supervision module.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]This paper describes an Active Vision System whose design assumes a distinction between fast or reactive and slow or background processes. Fast processes need to operate in cycles with critical timeouts that may affect system stability. While slow processes, though necessary, do not compromise system stability if its execution is delayed. Based on this simple taxonomy, a control architecture has been proposed and a prototype implemented that is able to track people in real-time with a robotic head while trying to identify the target. In this system, the tracking module is considered as the reactive part of the system while person identification is considered a background task.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]Active Vision Systems can be considered as dynamical systems which close the loop around artificial visual perception, controlling camera parameters, motion and also controlling processing to simplify, accelerate and do more robust visual perception. Research and Development in Active Vision Systems [Aloi87], [Bajc88] is a main area of interest in Computer Vision, mainly by its potential application in different scenarios where real-time performance is needed such as robot navigation, surveillance, visual inspection, among many others. Several systems have been developed during last years using robotic-heads for this purpose...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi sono stati analizzati alcuni metodi di ricerca per dati 3D. Viene illustrata una panoramica generale sul campo della Computer Vision, sullo stato dell’arte dei sensori per l’acquisizione e su alcuni dei formati utilizzati per la descrizione di dati 3D. In seguito è stato fatto un approfondimento sulla 3D Object Recognition dove, oltre ad essere descritto l’intero processo di matching tra Local Features, è stata fatta una focalizzazione sulla fase di detection dei punti salienti. In particolare è stato analizzato un Learned Keypoint detector, basato su tecniche di apprendimento di machine learning. Quest ultimo viene illustrato con l’implementazione di due algoritmi di ricerca di vicini: uno esauriente (K-d tree) e uno approssimato (Radial Search). Sono state riportate infine alcune valutazioni sperimentali in termini di efficienza e velocità del detector implementato con diversi metodi di ricerca, mostrando l’effettivo miglioramento di performance senza una considerabile perdita di accuratezza con la ricerca approssimata.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In computer vision, training a model that performs classification effectively is highly dependent on the extracted features, and the number of training instances. Conventionally, feature detection and extraction are performed by a domain-expert who, in many cases, is expensive to employ and hard to find. Therefore, image descriptors have emerged to automate these tasks. However, designing an image descriptor still requires domain-expert intervention. Moreover, the majority of machine learning algorithms require a large number of training examples to perform well. However, labelled data is not always available or easy to acquire, and dealing with a large dataset can dramatically slow down the training process. In this paper, we propose a novel Genetic Programming based method that automatically synthesises a descriptor using only two training instances per class. The proposed method combines arithmetic operators to evolve a model that takes an image and generates a feature vector. The performance of the proposed method is assessed using six datasets for texture classification with different degrees of rotation, and is compared with seven domain-expert designed descriptors. The results show that the proposed method is robust to rotation, and has significantly outperformed, or achieved a comparable performance to, the baseline methods.