914 resultados para DNA methylation, Epigenetics, Caulobacter crescentus
Resumo:
Inactivation of the genes involved in DNA mismatch repair is associated with microsatellite instability (MSI) in colorectal cancer. We report that hypermethylation of the 5′ CpG island of hMLH1 is found in the majority of sporadic primary colorectal cancers with MSI, and that this methylation was often, but not invariably, associated with loss of hMLH1 protein expression. Such methylation also occurred, but was less common, in MSI− tumors, as well as in MSI+ tumors with known mutations of a mismatch repair gene (MMR). No hypermethylation of hMSH2 was found. Hypermethylation of colorectal cancer cell lines with MSI also was frequently observed, and in such cases, reversal of the methylation with 5-aza-2′-deoxycytidine not only resulted in reexpression of hMLH1 protein, but also in restoration of the MMR capacity in MMR-deficient cell lines. Our results suggest that microsatellite instability in sporadic colorectal cancer often results from epigenetic inactivation of hMLH1 in association with DNA methylation.
Resumo:
Aberrant DNA methylation is a common phenomenon in human cancer, but its patterns, causes, and consequences are poorly defined. Promoter methylation of the DNA mismatch repair gene MutL homologue (MLH1) has been implicated in the subset of colorectal cancers that shows microsatellite instability (MSI). The present analysis of four MspI/HpaII sites at the MLH1 promoter region in a series of 89 sporadic colorectal cancers revealed two main methylation patterns that closely correlated with the MSI status of the tumors. These sites were hypermethylated in tumor tissue relative to normal mucosa in most MSI(+) cases (31/51, 61%). By contrast, in the majority of MSI(−) cases (20/38, 53%) the same sites showed methylation in normal mucosa and hypomethylation in tumor tissue. Hypermethylation displayed a direct correlation with increasing age and proximal location in the bowel and was accompanied by immunohistochemically documented loss of MLH1 protein both in tumors and in normal tissue. Similar patterns of methylation were observed in the promoter region of the calcitonin gene that does not have a known functional role in tumorigenesis. We propose a model of carcinogenesis where different epigenetic phenotypes distinguish the colonic mucosa in individuals who develop MSI(+) and MSI(−) tumors. These phenotypes may underlie the different developmental pathways that are known to occur in these tumors.
Resumo:
Underacetylation of histone H4 is thought to be involved in the molecular mechanism of mammalian X chromosome inactivation, which is an important model system for large-scale genetic control in eukaryotes. However, it has not been established whether histone underacetylation plays a critical role in the multistep inactivation pathway. Here we demonstrate differential histone H4 acetylation between the X chromosomes of a female marsupial, Macropus eugenii. Histone underacetylation is the only molecular aspect of X inactivation known to be shared by marsupial and eutherian mammals. Its strong evolutionary conservation implies that, unlike DNA methylation, histone underacetylation was a feature of dosage compensation in a common mammalian ancestor, and is therefore likely to play a central role in X chromosome inactivation in all mammals.
Resumo:
Protein kinases play central roles in the regulation of eukaryotic and prokaryotic cell growth, division, and differentiation. The Caulobacter crescentus divL gene encodes a novel bacterial tyrosine kinase essential for cell viability and division. Although the DivL protein is homologous to the ubiquitous bacterial histidine protein kinases (HPKs), it differs from previously studied members of this protein kinase family in that it contains a tyrosine residue (Tyr-550) in the conserved H-box instead of a histidine residue, which is the expected site of autophosphorylation. DivL is autophosphorylated on Tyr-550 in vitro, and this tyrosine residue is essential for cell viability and regulation of the cell division cycle. Purified DivL also catalyzes phosphorylation of CtrA and activates transcription in vitro of the cell cycle-regulated fliF promoter. Suppressor mutations in ctrA bypass the conditional cell division phenotype of cold-sensitive divL mutants, providing genetic evidence that DivL function in cell cycle and developmental regulation is mediated, at least in part, by the global response regulator CtrA. DivL is the only reported HPK homologue whose function has been shown to require autophosphorylation on a tyrosine, and, thus, it represents a new class of kinases within this superfamily of protein kinases.
Resumo:
Somatic-cell hybrids have been shown to maintain the correct epigenetic chromatin states to study developmental globin gene expression as well as gene expression on the active and inactive X chromosomes. This suggests the potential use of somatic-cell hybrids containing either a maternal or a paternal human chromosome as a model system to study known imprinted genes and to identify as-yet-unknown imprinted genes. Testing gene expression by using reverse transcription followed by PCR, we show that functional imprints are maintained at four previously characterized 15q11–q13 loci in hybrids containing a single human chromosome 15 and at two chromosome 11p15 loci in hybrids containing a single chromosome 11. In contrast, three γ-aminobutyric acid type A receptor subunit genes in 15q12–q13 are nonimprinted. Furthermore, we have found that differential DNA methylation imprints at the SNRPN promoter and at a CpG island in 11p15 are also maintained in somatic-cell hybrids. Somatic-cell hybrids therefore are a valid and powerful system for studying known imprinted genes as well as for rapidly identifying new imprinted genes.
Resumo:
The oocyte nuclear antigen of the monoclonal antibody 32-5B6 of Xenopus laevis is subject to regulated nuclear translocation during embryogenesis. It is distributed in the cytoplasm during oocyte maturation, where it remains during cleavage and blastula stages, before it gradually reaccumulates in the nuclei during gastrulation. We have now identified this antigen to be the enzyme S-adenosylhomocysteine hydrolase (SAHH). SAHH is the only enzyme that cleaves S-adenosylhomocysteine, a reaction product and an inhibitor of all S-adenosylmethionine-dependent methylation reactions. We have compared the spatial and temporal patterns of nuclear localization of SAHH and of nuclear methyltransferase activities during embryogenesis and in tissue culture cells. Nuclear localization of Xenopus SAHH did not temporally correlate with DNA methylation. However, we found that SAHH nuclear localization coincides with high rates of mRNA synthesis, a subpopulation colocalizes with RNA polymerase II, and inhibitors of SAHH reduce both methylation and synthesis of poly(A)+ RNA. We therefore propose that accumulation of SAHH in the nucleus may be required for efficient cap methylation in transcriptionally active cells. Mutation analysis revealed that the C terminus and the N terminus are both required for efficient nuclear translocation in tissue culture cells, indicating that more than one interacting domain contributes to nuclear accumulation of Xenopus SAHH.
Resumo:
V(D)J recombination is thought to be regulated by changes in the accessibility of target sites, such as modulation of methylation. To test whether demethylation of the kappa locus can activate recombination, we generated two recombinationally active B cell lines in which the gene for maintenance of genomic DNA methylation, Dnmt1, was flanked with loxP sites. Transduction with a retrovirus expressing both the cre recombinase and green fluorescent protein allowed us to purify recombinationally active cells devoid of methylation. Loss of methylation of the kappa locus was not sufficient to activate recombination, although transcription was activated in one line. It appears that demethylation of the kappa locus is not the rate-limiting step for altering accessibility and thus regulated demethylation does not generate specificity of recombination.
Resumo:
The promoters of MEA (FIS1), FIS2, and FIE (FIS3), genes that repress seed development in the absence of pollination, were fused to β-glucuronidase (GUS) to study their activity pattern. The FIS2∷GUS product is found in the embryo sac, in each of the polar cell nuclei, and in the central cell nucleus. After pollination, the maternally derived FIS2∷GUS protein occurs in the nuclei of the cenocytic endosperm. Before cellularization of the endosperm, activity is terminated in the micropylar and central nuclei of the endosperm and subsequently in the nuclei of the chalazal cyst. MEA∷GUS has a pattern of activity similar to that of FIS2∷GUS, but FIE∷GUS protein is found in many tissues, including the prepollination embryo sac, and in embryo and endosperm postpollination. The similarity in mutant phenotypes; the activity of FIE, MEA, and FIS2 in the same cells in the embryo sac; and the fact that MEA and FIE proteins interact in a yeast two-hybrid system suggest that these proteins operate in the same system of control of seed development. Maternal and not paternal FIS2∷GUS, MEA∷GUS, and FIE∷GUS show activity in early endosperm, so these genes may be imprinted. When fis2, mea, and fie mutants are pollinated, seed development is arrested at the heart embryo stage. The seed arrest of mea and fis2 is avoided when they are fertilized by a low methylation parent. The wild-type alleles of MEA or FIS2 are not required. The parent-of-origin-determined differential activity of MEA, FIS2, and FIE is not dependent on DNA methylation, but methylation does control some gene(s) that have key roles in seed development.
Resumo:
A global approach was used to analyze protein synthesis and stability during the cell cycle of the bacterium Caulobacter crescentus. Approximately one-fourth (979) of the estimated C. crescentus gene products were detected by two-dimensional gel electrophoresis, 144 of which showed differential cell cycle expression patterns. Eighty-one of these proteins were identified by mass spectrometry and were assigned to a wide variety of functional groups. Pattern analysis revealed that coexpression groups were functionally clustered. A total of 48 proteins were rapidly degraded in the course of one cell cycle. More than half of these unstable proteins were also found to be synthesized in a cell cycle-dependent manner, establishing a strong correlation between rapid protein turnover and the periodicity of the bacterial cell cycle. This is, to our knowledge, the first evidence for a global role of proteolysis in bacterial cell cycle control.
Resumo:
RNA-mediated, posttranscriptional gene silencing has been determined as the molecular mechanism underlying transgenic virus resistance in many plant virus-dicot host plant systems. In this paper we show that transgenic virus resistance in sugarcane (Saccharum spp. hybrid) is based on posttranscriptional gene silencing. The resistance is derived from an untranslatable form of the sorghum mosaic potyvirus strain SCH coat protein (CP) gene. Transgenic sugarcane plants challenged with sorghum mosaic potyvirus strain SCH had phenotypes that ranged from fully susceptible to completely resistant, and a recovery phenotype was also observed. Clones derived from the same transformation event or obtained after vegetative propagation could display different levels of virus resistance, suggesting the involvement of a quantitative component in the resistance response. Most resistant plants displayed low or undetectable steady-state CP transgene mRNA levels, although nuclear transcription rates were high. Increased DNA methylation was observed in the transcribed region of the CP transgenes in most of these plants. Collectively, these characteristics indicate that an RNA-mediated, homology-dependent mechanism is at the base of the virus resistance. This work extends posttranscriptional gene silencing and homology-dependent virus resistance, so far observed only in dicots, to an agronomically important, polyploid monocot.
Resumo:
DNA methylation of tumor suppressor genes is a common feature of human cancer. The cyclin-dependent kinase inhibitor gene p16/Ink4A is hypermethylated in a wide range of malignant tissues and the p14/ARF gene located 20 kb upstream on chromosome 9p21 is also methylated in carcinomas. p14/ARF (ARF, alternative reading frame) does not inhibit the activities of cyclins or cyclin-dependent kinase complexes; however, the importance of the two gene products in the etiology of cancer resides in their involvement in two major cell cycle regulatory pathways: p53 and the retinoblastoma protein, Rb, respectively. Distinct first exons driven from separate promoters are spliced onto the common exons 2 and 3 and the resulting proteins are translated in different reading frames. Both genes are expressed in normal cells but can be alternatively or coordinately silenced when their CpG islands are hypermethylated. Herein, we examined the presence of methyl-CpG binding proteins associated with aberrantly methylated promoters, the distribution of acetylated histones H3 and H4 by chromatin immunoprecipitation assays, and the effect of chemical treatment with 5-aza-2′-deoxycytidine (5aza-dC) and trichostatin A on gene induction in colon cell lines by quantitative reverse transcriptase–PCR. We observed that the methyl-CpG binding protein MBD2 is targeted to methylated regulatory regions and excludes the acetylated histones H3 and H4, resulting in a localized inactive chromatin configuration. When methylated, the genes can be induced by 5aza-dC but the combined action of 5aza-dC and trichostatin A results in robust gene expression. Thus, methyl-CpG binding proteins and histone deacetylases appear to cooperate in vivo, with a dominant effect of DNA methylation toward histone acetylation, and repress expression of tumor suppressor genes hypermethylated in cancers.
Resumo:
Liver-specific and nonliver-specific methionine adenosyltransferases (MATs) are products of two genes, MAT1A and MAT2A, respectively, that catalyze the formation of S-adenosylmethionine (AdoMet), the principal biological methyl donor. Mature liver expresses MAT1A, whereas MAT2A is expressed in extrahepatic tissues and is induced during liver growth and dedifferentiation. To examine the influence of MAT1A on hepatic growth, we studied the effects of a targeted disruption of the murine MAT1A gene. MAT1A mRNA and protein levels were absent in homozygous knockout mice. At 3 months, plasma methionine level increased 776% in knockouts. Hepatic AdoMet and glutathione levels were reduced by 74 and 40%, respectively, whereas S-adenosylhomocysteine, methylthioadenosine, and global DNA methylation were unchanged. The body weight of 3-month-old knockout mice was unchanged from wild-type littermates, but the liver weight was increased 40%. The Affymetrix genechip system and Northern and Western blot analyses were used to analyze differential expression of genes. The expression of many acute phase-response and inflammatory markers, including orosomucoid, amyloid, metallothionein, Fas antigen, and growth-related genes, including early growth response 1 and proliferating cell nuclear antigen, is increased in the knockout animal. At 3 months, knockout mice are more susceptible to choline-deficient diet-induced fatty liver. At 8 months, knockout mice developed spontaneous macrovesicular steatosis and predominantly periportal mononuclear cell infiltration. Thus, absence of MAT1A resulted in a liver that is more susceptible to injury, expresses markers of an acute phase response, and displays increased proliferation.
Resumo:
The fate of redundant genes resulting from genome duplication is poorly understood. Previous studies indicated that ribosomal RNA genes from one parental origin are epigenetically silenced during interspecific hybridization or polyploidization. Regulatory mechanisms for protein-coding genes in polyploid genomes are unknown, partly because of difficulty in studying expression patterns of homologous genes. Here we apply amplified fragment length polymorphism (AFLP)–cDNA display to perform a genome-wide screen for orthologous genes silenced in Arabidopsis suecica, an allotetraploid derived from Arabidopsis thaliana and Cardaminopsis arenosa. We identified ten genes that are silenced from either A. thaliana or C. arenosa origin in A. suecica and located in four of the five A. thaliana chromosomes. These genes represent a variety of RNA and predicted proteins including four transcription factors such as TCP3. The silenced genes in the vicinity of TCP3 are hypermethylated and reactivated by blocking DNA methylation, suggesting epigenetic regulation is involved in the expression of orthologous genes in polyploid genomes. Compared with classic genetic mutations, epigenetic regulation may be advantageous for selection and adaptation of polyploid species during evolution and development.
Resumo:
Small GTP-binding proteins play a critical role in the regulation of a range of cellular processes--including growth, differentiation, and intracellular transportation. Previously, we isolated a gene, rgp1, encoding a small GTP-binding protein, by differential screening of a rice cDNA library with probe DNAs from rice tissues treated with or without 5-azacytidine, a powerful inhibitor of DNA methylation. To determine the physiological role of rgp1, the coding region was introduced into tobacco plants. Transformants, with rgp1 in either sense or antisense orientations, showed distinct phenotypic changes with reduced apical dominance, dwarfism, and abnormal flower development. These abnormal phenotypes appeared to be associated with the higher levels of endogenous cytokinins that were 6-fold those of wild-type plants. In addition, the transgenic plants produced salicylic acid and salicylic acid-beta-glucoside in an unusual response to wounding, thus conferring increased resistance to tobacco mosaic virus infection. In normal plants, the wound- and pathogen-induced signal-transduction pathways are considered to function independently. However, the wound induction of salicylic acid in the transgenic plants suggests that expression of rgp1 somehow interfered with the normal signaling pathways and resulted in cross-signaling between these distinct transduction systems. The results imply that the defense signal-transduction system consists of a complicated and finely tuned network of several regulatory factors, including cytokinins, salicylic acid, and small GTP-binding proteins.
Resumo:
Parcela considerável de pacientes com distúrbios de crescimento não têm a causa de seus quadros clínicos estabelecida, incluindo aproximadamente 50% dos pacientes com diagnóstico clínico de síndrome de Silver−Russell (SRS) e 10-20% dos pacientes com síndrome de Beckwith-Wiedemann (BWS). O objetivo deste estudo foi investigar as causas genéticas e epigenéticas de distúrbios de crescimento, de etiologia desconhecida, numa contribuição para o entendimento de mecanismos que regulam o crescimento. O estudo compreendeu: (1) a investigação de microdesequilíbrios cromossômicos, por aCGH; (2) a análise do perfil de expressão alelo-específica de genes sujeitos a imprinting (IG), por pirossequenciamento (PSQ) ou sequenciamento de Sanger; (3) a investigação do padrão de metilação global em pacientes com restrição de crescimento, utilizando microarray de metilação. A casuística constituiu-se de 41 pacientes não aparentados, com distúrbios de crescimento, de etiologia desconhecida: (1) 25, com hipótese diagnóstica de SRS; (2) seis, com restrição de crescimento intrauterino e peso ao nascimento abaixo do 10º percentil, associados a outros sinais clínicos; (3) sete, com hipótese diagnóstica de BWS; e (4) três, com macrossomia pré-natal ou pós-natal, associada a outros sinais. A investigação de microdesequilíbrios cromossômicos foi realizada em 40 pacientes. Foram detectadas 58 variantes raras em 30/40 pacientes (75%): 40 foram consideradas provavelmente benignas (18 pacientes, 45%), 12, com efeito patogênico desconhecido (11 pacientes, 27,5%), duas, provavelmente patogênicas (um paciente, 2,5%) e quatro, patogênicas (três pacientes, 7,5%). Essas frequências são comparáveis àquelas descritas em estudos que investigaram CNV em grupos de pacientes com distúrbios de crescimento e outras alterações congênitas, incluindo SRS, e mostram a importância da investigação de microdesequilíbrios cromossômicos nesses pacientes. A diversidade dos microdesequilíbrios cromossômicos identificados é reflexo da heterogeneidade clínica das casuísticas. Neste estudo, muitos dos pacientes com hipótese diagnóstica de SRS e BWS apresentavam sinais clínicos atípicos, explicando a ausência neles das alterações (epi)genéticas que causam essas síndromes. A identificação de CNV características de outras síndromes reflete a sobreposição de sinais clínicos com BWS e SRS. A análise do perfil de expressão alelo-específica de IG foi realizada em um subgrupo de 18 pacientes com restrição de crescimento. Trinta IG com função em proliferação celular, crescimento fetal ou neurodesenvolvimento foram inicialmente selecionados. Após seleção de SNP transcritos com alta frequência na população, genotipagem de pacientes, genitores e indivíduos controle, determinação da expressão dos IG em sangue periférico e seu padrão de expressão (mono ou bialélico), 13 IG, expressos no sangue, tiveram a expressão alelo-específica avaliada, sete deles por PSQ e seis por sequenciamento de Sanger. Alterações no perfil de expressão de dois genes, de expressão normalmente paterna, foram detectadas em 4/18 pacientes (22%). Este estudo é o primeiro a utilizar pirossequenciamento e sequenciamento de Sanger na avaliação do perfil de expressão alelo-específica de IG, em pacientes com restrição de crescimento. Apesar de terem limitações, ambas as técnicas mostraram-se robustas e revelaram alterações de expressão alélica interessantes; entretanto, a relação dessas alterações com o quadro clínico dos pacientes permanece por esclarecer. A investigação da metilação global do DNA foi realizada em subgrupo de 21 pacientes com restrição de crescimento e em 24 indivíduos controle. Dois tipos de análise foram realizados: (1) análise diferencial de grupo e (2) análise diferencial individual. Na primeira análise, em que foi comparado o padrão de metilação do grupo de pacientes com quadro clínico sugestivo de SRS (n=16) com o do grupo controle (n=24), não houve indicação de hipo ou hipermetilação global no grupo SRS. Na segunda análise, foi comparado o padrão de metilação de cada um dos 21 pacientes com restrição de crescimento e dos 24 indivíduos controle, com o padrão de metilação do grupo controle. O número médio de CpG hipermetilados e de segmentos diferencialmente metilados (SDM) foi significativamente maior nos pacientes. Foram identificados 82 SDM hipermetilados, estando 57 associados a gene(s) (69,5%), em 16 pacientes, e 51 SDM hipometilados, 41 deles associados a gene(s) (80,4%), em 10 pacientes. A análise de ontologia genética dos 61 genes associados aos SDM hipo ou hipermetilados nos pacientes destacou genes que atuam no desenvolvimento e na morfogênese do sistema esquelético e de órgãos fetais, e na regulação da transcrição gênica e de processos metabólicos. Alterações de metilação em genes que atuam em processos de proliferação e diferenciação celulares e crescimento foram identificadas em 9/20 dos pacientes (45%), sugerindo implicação clínica. Não foi detectada alteração epigenética comum aos pacientes com diagnóstico clínico de SRS, explicável provavelmente pela heterogeneidade clínica. A investigação de metilação global, utilizando microarray, produziu novos dados que podem contribuir para a compreensão de mecanismos moleculares que influenciam o crescimento pré- e pós-natal. Na translocação aparentemente equilibrada - t(5;6)(q35.2;p22.3)dn, detectada em paciente com suspeita clínica de SRS, a interrupção de um gene, pela quebra no cromossomo 6, pode ser a causa do quadro clínico; alternativamente, a translocação pode ter impactado a regulação de genes de desenvolvimento localizados próximos aos pontos de quebra. A análise de expressão em sangue periférico mostrou que os níveis de cDNA do gene, interrompido pelo ponto de quebra da translocação, estavam reduzidos à metade. Além de sinais típicos da SRS, a paciente apresentava algumas características clínicas sugestivas de displasia cleidocraniana. Assim, a translocação t(5;6) pode ter alterado a interação de genes de desenvolvimento e seus elementos reguladores, levando à desregulação de sua expressão espaço-temporal, e resultando num fenótipo atípico, com características sobrepostas de mais de uma síndrome genética