Proteomic analysis of the bacterial cell cycle
Data(s) |
10/04/2001
03/04/2001
|
---|---|
Resumo |
A global approach was used to analyze protein synthesis and stability during the cell cycle of the bacterium Caulobacter crescentus. Approximately one-fourth (979) of the estimated C. crescentus gene products were detected by two-dimensional gel electrophoresis, 144 of which showed differential cell cycle expression patterns. Eighty-one of these proteins were identified by mass spectrometry and were assigned to a wide variety of functional groups. Pattern analysis revealed that coexpression groups were functionally clustered. A total of 48 proteins were rapidly degraded in the course of one cell cycle. More than half of these unstable proteins were also found to be synthesized in a cell cycle-dependent manner, establishing a strong correlation between rapid protein turnover and the periodicity of the bacterial cell cycle. This is, to our knowledge, the first evidence for a global role of proteolysis in bacterial cell cycle control. |
Identificador |
/pmc/articles/PMC31894/ /pubmed/11287652 |
Idioma(s) |
en |
Publicador |
National Academy of Sciences |
Direitos |
Copyright © 2001, The National Academy of Sciences |
Palavras-Chave | #Biological Sciences |
Tipo |
Text |