946 resultados para CpG methylation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The methylation of cytosinc residues in DNA is thought to play an important role in the regulation of gene expression, with active genes generally being hypomethylated. With this in mind peptides were synthcsised to mimic the cytosine-5 methylation activity carried out by DNA mcthylase, which however, showed no ability to carry out this function. The imidazotetrazinoncs are a novel group of antitumour agents which have demonstrated good activity against a range of murinc tumours and human tumour xenografts, and hypomethylation of DNA has been implicated in the mechanism of action. Studies have been conducted on the mechanism by which such agents cause hypomethylation, using DNA methylase partially purified from murine L1210 leukaemia cells. Unmodified calf thymus DNA does not inhibit the transfer of methyl groups from SAM to M.lysodeikticus DNA by partially purified DNA methylase. However, if the calf thymus DNA is modified by alkylating agents such as imida-zotetrazinones or nitrosoureas, the treated DNA becomes an inhibitor of the methylation reaction. This has been correlated with the induction of DNA damage, such as single strand breaks, since X-ray treated DNA and deoxyribonuclease treatment produces a similar effect. The mechanism of inhibition by the drug treated or damaged DNA is thought to occur by binding of the enzyme to an increased concentration of non-substrate DNA, presumably by the occurrence of single strand breaks, since neither sonication nor treatment with the restriction enzyme Mspl caused an inhibition. Attempts were made to elucidate the strict structure activity relationship for antitumour activity observed amongst the imidazotctrazinones. The transfection of a murine colon adcnocarcinoma cell line (MAC 13) with DNA extracted from GM892 or Raji cells previously treated with either the methyl (temozolomide) or ethyl (ethazolastone) imidazotetrazinone was performed. X-irradiated DNA did not cause any suppression of cell growth, suggesting that it was not due to physical damage. Transfection of MAC 13 cells with DNA extracted from GM892 cells, was more effective at inhibiting growth than DNA from Raji cells. Temozolomide treated cellular DNA was a more potent growth inhibitor than that from ethazolastone treated cells. For both agents the growth inhibitory effect was most marked with DNA extracted 6h after drug addition, and after 24h no growth suppression was observed. This suggested that the growth inhibitory effect is due to a repairable lesion. .The methylation of M.lysodeikticus DNA by DNA methylase is inhibited potently and specifically by both hereto and homoribo and dcoxyri-bopolynucleotides containing guanine residues. The inhibitory effect is unaffected by chain length or sugar residue, but is abolished when the O-6 residue of guanine is substituted as in poly d(OGG)2o. Potent inhibition is also shown by polyinosinic and polyxanthylic acids but not by polyadenylic acid or by heteropolymers containing adcnine and thymine. These results suggest that the 6 position of the purine nucleus is important in binding of the DNA methylase to particular regions of the DNA and that the hydrogen bonding properties of this group are important in enzyme recognition. This was confirmed using synthetic oligonucleotides as substrates for DNA methylase. Enzymatic methylation of cytosine is completely suppressed, when O6 methylguanine replaces guanine in CG sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA methylation appears to be involved in the regulation of gene expression. Transcriptionally inactive (silenced) genes normally contain a high proportion of 5-methyl-2'-deoxycytosine residues whereas transcriptionally active genes show much reduced levels. There appears good reason to believe that chemical agents capable of methylating 2'-deoxycytosine might affect gene expression and as a result of hypermethylating promoter regions of cytosine-guanine rich oncogenic sequences, cancer related genes may be silenced. This thesis describes the synthesis of a number of `electrophilic' S-methylsulphonium compounds and assesses their ability to act as molecules capable of methylating cytosine at position 5 and also considers their potential as cytotoxic agents. DNA is methylated in vivo by DNA methyltransferase utilising S-adenoxylmethionine as the methyl donor. This thesis addresses the theory that S-adenoxylmethionine may be replaced as the methyl donor for DNA methytransferase by other sulphonium compounds. S-[3H-methyl]methionine sulphonium iodide was synthesised and experiments to assess the ability of this compounds to transfer methyl groups to cytosine in the presence of DNA methyltransferase were unsuccessful. A proline residue adjacent to a cysteine residue has been identified to a highly conserved feature of the active site region of a large number of prokaryotic DNA methyltransferases. The thesis examines the possibility that short peptides containing the Pro-Cys fragment may be able to facilitate the alkylation of cytosine position 5 by sulphonium compounds. Peptides were synthesised up to 9 amino acids in length but none were shown to exhibit significant activity. Molecular modelling techniques, including Chem-X, Quanta, BIPED and protein structure prediction programs were used to assess any structural similarities that may exist between short peptides containing a Pro-Cys fragment and similar sequences present in proteins. A number of similar structural features were observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of CoFe2O4 nanoparticles have been prepared via co-precipitation and controlled thermal sintering, with tunable diameters spanning 7–50 nm. XRD confirms that the inverse spinel structure is adopted by all samples, while XPS shows their surface compositions depend on calcination temperature and associated particle size. Small (<20 nm) particles expose Fe3+ enriched surfaces, whereas larger (∼50 nm) particles formed at higher temperatures possess Co:Fe surface compositions close to the expected 1:2 bulk ratio. A model is proposed in which smaller crystallites expose predominately (1 1 1) facets, preferentially terminated in tetrahedral Fe3+ surface sites, while sintering favours (1 1 0) and (1 0 0) facets and Co:Fe surface compositions closer to the bulk inverse spinel phase. All materials were active towards the gas-phase methylation of phenol to o-cresol at temperatures as low as 300 °C. Under these conditions, materials calcined at 450 and 750 °C exhibit o-cresol selectivities of ∼90% and 80%, respectively. Increasing either particle size or reaction temperature promotes methanol decomposition and the evolution of gaseous reductants (principally CO and H2), which may play a role in CoFe2O4 reduction and the concomitant respective dehydroxylation of phenol to benzene. The degree of methanol decomposition, and consequent H2 or CO evolution, appears to correlate with surface Co2+ content: larger CoFe2O4 nanoparticles have more Co rich surfaces and are more active towards methanol decomposition than their smaller counterparts. Reduction of the inverse spinel surface thus switches catalysis from the regio- and chemo-selective methylation of phenol to o-cresol, towards methanol decomposition and phenol dehydroxylation to benzene. At 300 °C sub-20 nm CoFe2O4 nanoparticles are less active for methanol decomposition and become less susceptible to reduction than their 50 nm counterparts, favouring a high selectivity towards methylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA methylation is a major control program that modulates gene expression in a plethora of organisms. Gene silencing through methylation occurs through the activity of DNA methyltransferases, enzymes that transfer a methyl group from S-adenosyl-l-methionine to the carbon 5 position of cytosine. DNA methylation patterns are established by the de novo DNA methyltransferases (DNMTs) DNMT3A and DNMT3B and are subsequently maintained by DNMT1. Aging and age-related diseases include defined changes in 5-methylcytosine content and are generally characterized by genome-wide hypomethylation and promoter-specific hypermethylation. These changes in the epigenetic landscape represent potential disease biomarkers and are thought to contribute to age-related pathologies, such as cancer, osteoarthritis, and neurodegeneration. Some diseases, such as a hereditary form of sensory neuropathy accompanied by dementia, are directly caused by methylomic changes. Epigenetic modifications, however, are reversible and are therefore a prime target for therapeutic intervention. Numerous drugs that specifically target DNMTs are being tested in ongoing clinical trials for a variety of cancers, and data from finished trials demonstrate that some, such as 5-azacytidine, may even be superior to standard care. DNMTs, demethylases, and associated partners are dynamically shaping the methylome and demonstrate great promise with regard to rejuvenation. © Copyright 2012, Mary Ann Liebert, Inc. 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoarthritis (OA) is the most common form of arthritis with a high socioeconomic burden, with an incompletely understood etiology. Evidence suggests a role for the transforming growth factor beta (TGF-ß) signalling pathway and epigenomics in OA. The aim of this thesis was to understand the involvement of the TGF-ß pathway in OA and to determine the DNA methylation patterns of OA-affected cartilage as compared to the OA-free cartilage. First, I found that a common SNP in the BMP2 gene, a ligand in the Bone morphogenetic protein (BMP) subunit of TGF-ß pathway, was associated with OA in the Newfoundland population. I also showed a genetic association between SMAD3 - a signal transducer in the TGF-ß subunit of the TGF-ß signalling pathway - and the total radiographic burden of OA. I further demonstrated that SMAD3 is over-expressed in OA cartilage, suggesting an over activation of the TGF-ß signalling in OA. Next, I examined the connection of these genes in the regulation of matrix metallopeptidase 13 (MMP13) - an enzyme known to destroy extracellular matrix in OA cartilage - in the context of the TGF-ß signalling. The analyses showed that TGF-ß, MMP13, and SMAD3 were overexpressed in OA cartilage, whereas the expression of BMP2 was significantly reduced. The expression of TGF-ß was positively correlated with that of SMAD3 and MMP13, suggesting that TGF-ß signalling is involved in up-regulation of MMP13. This regulation, however, appears not to be controlled by SMAD3 signals, possibly due to the involvement of collateral signalling, and to be suppressed by BMP regulation in healthy cartilage, whose levels were reduced in end-stage OA. In a genome-wide DNA methylation analysis, I reported CpG sites differentially methylated in OA and showed that the cartilage methylome has a potential to distinguish between OA-affected and non-OA cartilage. Functional clustering analysis of the genes harbouring differentially methylated loci revealed that they are enriched in the skeletal system morphogenesis pathway, which could be a potential candidate for further OA studies. Overall, the findings from the present thesis provide evidence that the TGF-ß signalling pathway is associated with the development of OA, and epigenomics might be involved as a potential mechanism in OA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Arabidopsis root apical meristem (RAM) is a complex tissue capable of generating all the cell types that ultimately make up the root. The work presented in this thesis takes advantage of the versatility of high-throughput sequencing to address two independent questions about the root meristem. Although a lot of information is known regarding the cell fate decisions that occur at the RAM, cortex specification and differentiation remain poorly understood. In the first part of this thesis, I used an ethylmethanesulfonate (EMS) mutagenized marker line to perform a forward genetics screen. The goal of this screen was to identify novel genes involved in the specification and differentiation of the cortex tissue. Mapping analysis from the results obtained in this screen revealed a new allele of BRASSINOSTEROID4 with abnormal marker expression in the cortex tissue. Although this allele proved to be non-cortex specific, this project highlights new technology that allows mapping of EMS-generated mutations without the need to map-cross or back-cross. In the second part of this thesis, using fluorescence activated cell sorting (FACS) coupled with high throughput sequencing, my collaborators and I generated single-base resolution whole genome DNA methylomes, mRNA transcriptomes, and smallRNA transcriptomes for six different populations of cell types in the Arabidopsis root meristem. We were able to discover that the columella is hypermethylated in the CHH context within transposable elements. This hypermethylation is accompanied by upregulation of the RNA-dependent DNA methylation pathway (RdDM), including higher levels of 24-nt silencing RNAs (siRNAs). In summary, our studies demonstrate the versatility of high-throughput sequencing as a method for identifying single mutations or to perform complex comparative genomic analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding how genes affect behavior is critical to develop precise therapies for human behavioral disorders. The ability to investigate the relationship between genes and behavior has been greatly advanced over the last few decades due to progress in gene-targeting technology. Recently, the Tet gene family was discovered and implicated in epigenetic modification of DNA methylation by converting 5-methylcytosine to 5-hydroxymethylcytosine (5hmC). 5hmC and its catalysts, the TET proteins, are highly abundant in the postnatal brain but with unclear functions. To investigate their neural functions, we generated new lines of Tet1 and Tet3 mutant mice using a gene targeting approach. We designed both mutations to cause a frameshift by deleting the largest coding exon of Tet1 (Tet1Δe4) and the catalytic domain of Tet3 (Tet3Δe7-9). As Tet1 is also highly expressed in embryonic stem cells (ESCs), we generated Tet1 homozygous deleted ESCs through sequential targeting to compare the function of Tet1 in the brain to its role in ESCs. To test our hypothesis that TET proteins epigenetically regulate transcription of key neural genes important for normal brain function, we examined transcriptional and epigenetic differences in the Tet1Δe4 mouse brain. The oxytocin receptor (OXTR), a neural gene implicated in social behaviors, is suggested to be epigenetically regulated by an unknown mechanism. Interestingly, several human studies have found associations between OXTR DNA hypermethylation and a wide spectrum of behavioral traits and neuropsychiatric disorders including autism spectrum disorders. Here we report the first evidence for an epigenetic mechanism of Oxtr transcription as expression of Oxtr is reduced in the brains of Tet1Δe4-/- mice. Likewise, the CpG island overlapping the promoter of Oxtr is hypermethylated during early embryonic development and persists into adulthood. We also discovered altered histone modifications at the hypermethylated regions, indicating the loss of TET1 has broad effects on the chromatin structure at Oxtr. Unexpectedly, we discovered an array of novel mRNA isoforms of Oxtr that are selectively reduced in Tet1Δe4-/- mice. Additionally, Tet1Δe4-/- mice display increased agonistic behaviors and impaired maternal care and short-term memory. Our findings support a novel role for TET1 in regulating Oxtr expression by preventing DNA hypermethylation and implicate TET1 in social behaviors, offering novel insight into Oxtr epigenetic regulation and its role in neuropsychiatric disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Low levels of methylation within repetitive DNA elements, such as long interspersed nuclear element-1 (LINE-1) and Alu repeats, are believed to epigenetically predispose an individual to cancer and other diseases. The extent to which lifestyle factors affect the degree of DNA methylation within these genomic regions has yet to be fully understood. Adiposity and sex hormones are established risk factors for certain types of cancer and other illnesses, particularly amongst postmenopausal women. The aim of the current investigation is to assess the impact of adiposity and sex hormones on LINE-1 and Alu methylation in healthy postmenopausal women. METHODS: A cross-sectional study was conducted using baseline data from an ancillary study of the Alberta Physical Activity and Breast Cancer Prevention (ALPHA) Trial. Current adiposity was measured using a dual-energy x-ray absorptiometry (DXA) scan, computed tomography (CT) scan, and balance beam scale. Historical weights were self-reported in a questionnaire. Current endogenous sex hormone concentrations were measured in fasting blood serum. Estimated lifetime number of menstrual cycles was used as a proxy for cumulative exposure to ovarian sex hormones. Repetitive element methylation was quantified in white blood cells using a pyrosequencing assay. Linear regression was used to model the relations of interest while adjusting for important confounders. RESULTS: Adiposity and serum estrogen concentrations were positively related to LINE-1 methylation but were not associated with Alu methylation. Cumulative ovarian sex hormone exposure had a “U-shaped” relation with LINE-1 regardless of folate intake and a negative relation with Alu methylation amongst low folate consumers. Androgens were not associated with repetitive element DNA methylation in this population. CONCLUSION: Adiposity and estrogens appear to play a role in maintaining high levels of repetitive element DNA methylation in healthy postmenopausal women. LINE-1 methylation may be a mechanism whereby estrogen exposure protects against cardiovascular and neurodegenerative illnesses. These results add to the growing body of literature showing how the epigenome is shaped by our lifestyle choices. Future prospective studies assessing the relation between levels of repetitive element DNA methylation in healthy individuals and subsequent disease risk are needed to better understand the clinical significance of these results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fibrosis is a progressive and potentially fatal process that can occur in numerous organ systems. Characterised by the excessive deposition of extracellular matrix proteins such as collagens and fibronectin, fibrosis affects normal tissue architecture and impedes organ function. Although a considerable amount of research has focused on the mechanisms underlying disease pathogenesis, current therapeutic options do not directly target the pro-fibrotic process. As a result, there is a clear unmet clinical need to develop new agents. Novel findings implicate a role for epigenetic modifications contributing to the progression of fibrosis by alteration of gene expression profiles. This review will focus on DNA methylation; its association with fibroblast differentiation and activation and the consequent buildup of fibrotic scar tissue. The potential use of therapies that modulate this epigenetic pathway for the treatment of fibrosis in several organ systems is also discussed.