973 resultados para Computational biology


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter focuses on the interactions and roles between delays and intrinsic noise effects within cellular pathways and regulatory networks. We address these aspects by focusing on genetic regulatory networks that share a common network motif, namely the negative feedback loop, leading to oscillatory gene expression and protein levels. In this context, we discuss computational simulation algorithms for addressing the interplay of delays and noise within the signaling pathways based on biological data. We address implementational issues associated with efficiency and robustness. In a molecular biology setting we present two case studies of temporal models for the Hes1 gene (Monk, 2003; Hirata et al., 2002), known to act as a molecular clock, and the Her1/Her7 regulatory system controlling the periodic somite segmentation in vertebrate embryos (Giudicelli and Lewis, 2004; Horikawa et al., 2006).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular biology is a scientific discipline which has changed fundamentally in character over the past decade to rely on large scale datasets – public and locally generated - and their computational analysis and annotation. Undergraduate education of biologists must increasingly couple this domain context with a data-driven computational scientific method. Yet modern programming and scripting languages and rich computational environments such as R and MATLAB present significant barriers to those with limited exposure to computer science, and may require substantial tutorial assistance over an extended period if progress is to be made. In this paper we report our experience of undergraduate bioinformatics education using the familiar, ubiquitous spreadsheet environment of Microsoft Excel. We describe a configurable extension called QUT.Bio.Excel, a custom ribbon, supporting a rich set of data sources, external tools and interactive processing within the spreadsheet, and a range of problems to demonstrate its utility and success in addressing the needs of students over their studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone morphogen proteins (BMPs) are distributed along a dorsal-ventral (DV) gradient in many developing embryos. The spatial distribution of this signaling ligand is critical for correct DV axis specification. In various species, BMP expression is spatially localized, and BMP gradient formation relies on BMP transport, which in turn requires interactions with the extracellular proteins Short gastrulation/Chordin (Chd) and Twisted gastrulation (Tsg). These binding interactions promote BMP movement and concomitantly inhibit BMP signaling. The protease Tolloid (Tld) cleaves Chd, which releases BMP from the complex and permits it to bind the BMP receptor and signal. In sea urchin embryos, BMP is produced in the ventral ectoderm, but signals in the dorsal ectoderm. The transport of BMP from the ventral ectoderm to the dorsal ectoderm in sea urchin embryos is not understood. Therefore, using information from a series of experiments, we adapt the mathematical model of Mizutani et al. (2005) and embed it as the reaction part of a one-dimensional reaction–diffusion model. We use it to study aspects of this transport process in sea urchin embryos. We demonstrate that the receptor-bound BMP concentration exhibits dorsally centered peaks of the same type as those observed experimentally when the ternary transport complex (Chd-Tsg-BMP) forms relatively quickly and BMP receptor binding is relatively slow. Similarly, dorsally centered peaks are created when the diffusivities of BMP, Chd, and Chd-Tsg are relatively low and that of Chd-Tsg-BMP is relatively high, and the model dynamics also suggest that Tld is a principal regulator of the system. At the end of this paper, we briefly compare the observed dynamics in the sea urchin model to a version that applies to the fly embryo, and we find that the same conditions can account for BMP transport in the two types of embryos only if Tld levels are reduced in sea urchin compared to fly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In vitro cell biology assays play a crucial role in informing our understanding of the migratory, proliferative and invasive properties of many cell types in different biological contexts. While mono-culture assays involve the study of a population of cells composed of a single cell type, co-culture assays study a population of cells composed of multiple cell types (or subpopulations of cells). Such co-culture assays can provide more realistic insights into many biological processes including tissue repair, tissue regeneration and malignant spreading. Typically, system parameters, such as motility and proliferation rates, are estimated by calibrating a mathematical or computational model to the observed experimental data. However, parameter estimates can be highly sensitive to the choice of model and modelling framework. This observation motivates us to consider the fundamental question of how we can best choose a model to facilitate accurate parameter estimation for a particular assay. In this work we describe three mathematical models of mono-culture and co-culture assays that include different levels of spatial detail. We study various spatial summary statistics to explore if they can be used to distinguish between the suitability of each model over a range of parameter space. Our results for mono-culture experiments are promising, in that we suggest two spatial statistics that can be used to direct model choice. However, co-culture experiments are far more challenging: we show that these same spatial statistics which provide useful insight into mono-culture systems are insuffcient for co-culture systems. Therefore, we conclude that great care ought to be exercised when estimating the parameters of co-culture assays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational epigenetics is a new area of research focused on exploring how DNA methylation patterns affect transcription factor binding that affect gene expression patterns. The aim of this study was to produce a new protocol for the detection of DNA methylation patterns using computational analysis which can be further confirmed by bisulfite PCR with serial pyrosequencing. The upstream regulatory element and pre-initiation complex relative to CpG islets within the methylenetetrahydrofolate reductase gene were determined via computational analysis and online databases. The 1,104 bp long CpG island located near to or at the alternative promoter site of methylenetetrahydrofolate reductase gene was identified. The CpG plot indicated that CpG islets A and B, within the island, contained 62 and 75 % GC content CpG ratios of 0.70 and 0.80–0.95, respectively. Further exploration of the CpG islets A and B indicates that the transcription start sites were GGC which were absent from the TATA boxes. In addition, although six PROSITE motifs were identified in CpG B, no motifs were detected in CpG A. A number of cis-regulatory elements were found in different regions within the CpGs A and B. Transcription factors were predicted to bind to CpGs A and B with varying affinities depending on the DNA methylation status. In addition, transcription factor binding may influence the expression patterns of the methylenetetrahydrofolate reductase gene by recruiting chromatin condensation inducing factors. These results have significant implications for the understanding of the architecture of transcription factor binding at CpG islets as well as DNA methylation patterns that affect chromatin structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biomedical systems involve a large number of entities and intricate interactions between these. Their direct analysis is, therefore, difficult, and it is often necessary to rely on computational models. These models require significant resources and parallel computing solutions. These approaches are particularly suited, given parallel aspects in the nature of biomedical systems. Model hybridisation also permits the integration and simultaneous study of multiple aspects and scales of these systems, thus providing an efficient platform for multidisciplinary research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2009, the National Research Council of the National Academies released a report on A New Biology for the 21st Century. The council preferred the term ‘New Biology’ to capture the convergence and integration of the various disciplines of biology. The National Research Council stressed: ‘The essence of the New Biology, as defined by the committee, is integration—re-integration of the many sub-disciplines of biology, and the integration into biology of physicists, chemists, computer scientists, engineers, and mathematicians to create a research community with the capacity to tackle a broad range of scientific and societal problems.’ They define the ‘New Biology’ as ‘integrating life science research with physical science, engineering, computational science, and mathematics’. The National Research Council reflected: 'Biology is at a point of inflection. Years of research have generated detailed information about the components of the complex systems that characterize life––genes, cells, organisms, ecosystems––and this knowledge has begun to fuse into greater understanding of how all those components work together as systems. Powerful tools are allowing biologists to probe complex systems in ever greater detail, from molecular events in individual cells to global biogeochemical cycles. Integration within biology and increasingly fruitful collaboration with physical, earth, and computational scientists, mathematicians, and engineers are making it possible to predict and control the activities of biological systems in ever greater detail.' The National Research Council contended that the New Biology could address a number of pressing challenges. First, it stressed that the New Biology could ‘generate food plants to adapt and grow sustainably in changing environments’. Second, the New Biology could ‘understand and sustain ecosystem function and biodiversity in the face of rapid change’. Third, the New Biology could ‘expand sustainable alternatives to fossil fuels’. Moreover, it was hoped that the New Biology could lead to a better understanding of individual health: ‘The New Biology can accelerate fundamental understanding of the systems that underlie health and the development of the tools and technologies that will in turn lead to more efficient approaches to developing therapeutics and enabling individualized, predictive medicine.’ Biological research has certainly been changing direction in response to changing societal problems. Over the last decade, increasing awareness of the impacts of climate change and dwindling supplies of fossil fuels can be seen to have generated investment in fields such as biofuels, climate-ready crops and storage of agricultural genetic resources. In considering biotechnology’s role in the twenty-first century, biological future-predictor Carlson’s firm Biodesic states: ‘The problems the world faces today – ecosystem responses to global warming, geriatric care in the developed world or infectious diseases in the developing world, the efficient production of more goods using less energy and fewer raw materials – all depend on understanding and then applying biology as a technology.’ This collection considers the roles of intellectual property law in regulating emerging technologies in the biological sciences. Stephen Hilgartner comments that patent law plays a significant part in social negotiations about the shape of emerging technological systems or artefacts: 'Emerging technology – especially in such hotbeds of change as the life sciences, information technology, biomedicine, and nanotechnology – became a site of contention where competing groups pursued incompatible normative visions. Indeed, as people recognized that questions about the shape of technological systems were nothing less than questions about the future shape of societies, science and technology achieved central significance in contemporary democracies. In this context, states face ongoing difficulties trying to mediate these tensions and establish mechanisms for addressing problems of representation and participation in the sociopolitical process that shapes emerging technology.' The introduction to the collection will provide a thumbnail, comparative overview of recent developments in intellectual property and biotechnology – as a foundation to the collection. Section I of this introduction considers recent developments in United States patent law, policy and practice with respect to biotechnology – in particular, highlighting the Myriad Genetics dispute and the decision of the Supreme Court of the United States in Bilski v. Kappos. Section II considers the cross-currents in Canadian jurisprudence in intellectual property and biotechnology. Section III surveys developments in the European Union – and the interpretation of the European Biotechnology Directive. Section IV focuses upon Australia and New Zealand, and considers the policy responses to the controversy of Genetic Technologies Limited’s patents in respect of non-coding DNA and genomic mapping. Section V outlines the parts of the collection and the contents of the chapters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large-scale chromosome rearrangements such as copy number variants (CNVs) and inversions encompass a considerable proportion of the genetic variation between human individuals. In a number of cases, they have been closely linked with various inheritable diseases. Single-nucleotide polymorphisms (SNPs) are another large part of the genetic variance between individuals. They are also typically abundant and their measuring is straightforward and cheap. This thesis presents computational means of using SNPs to detect the presence of inversions and deletions, a particular variety of CNVs. Technically, the inversion-detection algorithm detects the suppressed recombination rate between inverted and non-inverted haplotype populations whereas the deletion-detection algorithm uses the EM-algorithm to estimate the haplotype frequencies of a window with and without a deletion haplotype. As a contribution to population biology, a coalescent simulator for simulating inversion polymorphisms has been developed. Coalescent simulation is a backward-in-time method of modelling population ancestry. Technically, the simulator also models multiple crossovers by using the Counting model as the chiasma interference model. Finally, this thesis includes an experimental section. The aforementioned methods were tested on synthetic data to evaluate their power and specificity. They were also applied to the HapMap Phase II and Phase III data sets, yielding a number of candidates for previously unknown inversions, deletions and also correctly detecting known such rearrangements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Importance of the field: The shift in focus from ligand based design approaches to target based discovery over the last two to three decades has been a major milestone in drug discovery research. Currently, it is witnessing another major paradigm shift by leaning towards the holistic systems based approaches rather the reductionist single molecule based methods. The effect of this new trend is likely to be felt strongly in terms of new strategies for therapeutic intervention, new targets individually and in combinations, and design of specific and safer drugs. Computational modeling and simulation form important constituents of new-age biology because they are essential to comprehend the large-scale data generated by high-throughput experiments and to generate hypotheses, which are typically iterated with experimental validation. Areas covered in this review: This review focuses on the repertoire of systems-level computational approaches currently available for target identification. The review starts with a discussion on levels of abstraction of biological systems and describes different modeling methodologies that are available for this purpose. The review then focuses on how such modeling and simulations can be applied for drug target discovery. Finally, it discusses methods for studying other important issues such as understanding targetability, identifying target combinations and predicting drug resistance, and considering them during the target identification stage itself. What the reader will gain: The reader will get an account of the various approaches for target discovery and the need for systems approaches, followed by an overview of the different modeling and simulation approaches that have been developed. An idea of the promise and limitations of the various approaches and perspectives for future development will also be obtained. Take home message: Systems thinking has now come of age enabling a `bird's eye view' of the biological systems under study, at the same time allowing us to `zoom in', where necessary, for a detailed description of individual components. A number of different methods available for computational modeling and simulation of biological systems can be used effectively for drug target discovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The existing vaccines against influenza are based on the generation of neutralizing antibody primarily directed against surface proteins-hernagglutinin and neuraminidase. In this work, we have computationally defined conserved T cell epitopes of proteins of influenza virus H5N1 to help in the design of a vaccine with haplotype specificity for a target population. The peptides from the proteome of H5NI irus which are predicted to bind to different HLAs, do not show similarity with peptides of human proteorne and are also identified to be generated by proteolytic cleavage. These peptides could be made use of in the design of either a DNA vaccine or a subunit vaccine against V influenza. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mass spectrometry (MS) became a standard tool for identifying metabolites in biological tissues, and metabolomics is slowly acknowledged as a legitimate research discipline for characterizing biological conditions. The computational analyses of metabolomics, however, lag behind compared with the rapid advances in analytical aspects for two reasons. First is the lack of standardized data repository for mass spectra: each research institution is flooded with gigabytes of mass-spectral data from its own analytical groups and cannot host a world-class repository for mass spectra. The second reason is the lack of informatics experts that are fully experienced with spectral analyses. The two barriers must be overcome to establish a publicly free data server for MS analysis in metabolomics as does GenBank in genomics and UniProt in proteomics. The workshop brought together bioinformaticians working on mass spectral analyses in Finland and Japan with the goal to establish a consortium to freely exchange and publicize mass spectra of metabolites measured on various platforms computational tools to analyze spectra spectral knowledge that are computationally predicted from standardized data. This book contains the abstracts of the presentations given in the workshop. The programme of the workshop consisted of oral presentations from Japan and Finland, invited lectures from Steffen Neumann (Leibniz Institute of Plant Biochemistry), Matej Oresic (VTT), Merja Penttila (VTT) and Nicola Zamboni (ETH Zurich) as well as free form discussion among the participants. The event was funded by Academy of Finland (grants 139203 and 118653), Japan Society for the Promotion of Science (JSPS Japan-Finland Bilateral Semi- nar Program 2010) and Department of Computer Science University of Helsinki. We would like to thank all the people contributing to the technical pro- gramme and the sponsors for making the workshop possible. Helsinki, October 2010 Masanori Arita, Markus Heinonen and Juho Rousu

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multidrug-resistant Salmonella serovars have been a recent concern in curing infectious diseases like typhoid. Salmonella BaeS and BaeR are the two-component system (TCS) that signal transduction proteins found to play an important role in its multidrug resistance. A canonical TCS comprises a histidine kinase (HK) and its cognate partner response regulator (RR). The general approaches for therapeutic targeting are either the catalytic ATP-binding domain or the dimerization domain HisKA (DHp) of the HK, and in some cases, the receiver or the regulatory domain of the RR proteins. Earlier efforts of identifying novel drugs targeting the signal transduction protein have not been quite successful, as it shares similar ATP-binding domain with the key house keeping gene products of the mammalian GHL family. However, targeting the dimerization domain of HisKA through which the signals are received from the RR can be a better approach. In this article, we show stepwise procedure to specifically identify the key interacting residues involved in the dimerization with the RR along with effective targeting by ligands screened from the public database. We have found a few inhibitors which target effectively the important residues for the dimerization activity. Our results suggest a plausible de novo design of better DHp domain inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein misfolding is a general causation of classical conformational diseases and many pathogenic changes that are the result of structural conversion. Here I review recent progress in clinical and computational approaches for each stage of the misfolding process, aiming to present readers an outline for swift comprehension of this field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a combined computational program. we identified 50 potential microRNAs (miRNAs) in Giardia lamblia. one of the most primitive unicellular eukaryotes. These miRNAs are unique to G. lamblia and no homologues have been found in other organisms; miRNAs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose:
To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies.

Materials and Methods:
A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields.

Results:
The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses.

Conclusions:
The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.