997 resultados para Closed Convex Process
Resumo:
Solution enthalpies of 18-crown-6 have been obtained for a set of 14 protic and aprotic solvents at 298.15 K. The complementary use of Solomonov's methodology and a QSPR-based approach allowed the identification of the most significant solvent descriptors that model the interaction enthalpy contribution of the solution process (Delta H-int(A/S)). Results were compared with data previously obtained for 1,4-dioxane. Although the interaction enthalpies of 18-crown-6 correlate well with those of 1,4-dioxane, the magnitude of the most relevant parameters, pi* and beta, is almost three times higher for 18-crown-6. This is rationalized in terms of the impact of the solute's volume in the solution processes of both compounds. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Coffee silverskin is a major roasting by-product that could be valued as a source of antioxidant compounds. The effect of the major variables (solvent polarity, temperature and extraction time) affecting the extraction yields of bioactive compounds and antioxidant activity of silverskin extracts was evaluated. The extracts composition varied significantly with the extraction conditions used. A factorial experimental design showed that the use of a hydroalcoholic solvent (50%:50%) at 40 °C for 60 min is a sustainable option to maximize the extraction yield of bioactive compounds and the antioxidant capacity of extracts. Using this set of conditions it was possible to obtain extracts containing total phenolics (302.5 ± 7.1 mg GAE/L), tannins (0.43 ± 0.06 mg TAE/L), and flavonoids (83.0 ± 1.4 mg ECE/L), exhibiting DPPHradical dot scavenging activity (326.0 ± 5.7 mg TE/L) and ferric reducing antioxidant power (1791.9 ± 126.3 mg SFE/L). These conditions allowed, in comparison with other “more effective” for some individual parameters, a cost reduction, saving time and energy.
Resumo:
The fractal geometry is used to model of a naturally fractured reservoir and the concept of fractional derivative is applied to the diffusion equation to incorporate the history of fluid flow in naturally fractured reservoirs. The resulting fractally fractional diffusion (FFD) equation is solved analytically in the Laplace space for three outer boundary conditions. The analytical solutions are used to analyze the response of a naturally fractured reservoir considering the anomalous behavior of oil production. Several synthetic examples are provided to illustrate the methodology proposed in this work and to explain the diffusion process in fractally fractured systems.
Resumo:
Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering
Resumo:
This work intends to evaluate the (mechanical and durability) performance of concrete made with coarse recycled concrete aggregates (CRCA) obtained using two crushing processes: primary crushing (PC) and primary plus secondary crushing (PSC). This analysis intends to select the most efficient production process of recycled aggregates (RA). The RA used here resulted from precast products (P), with strength classes of 20 MPa, 45 MPa and 65 MPa, and from laboratory-made concrete (L) with the same compressive strengths. The evaluation of concrete was made with the following tests: compressive strength; splitting tensile strength; modulus of elasticity; carbona-tion resistance; chloride penetration resistance; capillary water absorption; and water absorption by immersion. These findings contribute to a solid and innovative basis that allows the precasting industry to use without restrictions the waste it generates. © (2015) Trans Tech Publications, Switzerland.
Resumo:
The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.
Resumo:
Dissertation presented to obtain a Ph.D. degree in Engineering and Technology Sciences, Biotechnology at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa
Resumo:
A presente dissertação foi realizada em colaboração com o grupo empresarial Monteiro, Ribas, tendo como principal objectivo a realização de uma auditoria à gestão dos resíduos industriais produzidos pelas suas fábricas localizadas na Estrada da Circunvalação, no Porto. Para cumprir este objectivo, inicialmente foi efectuado um levantamento das obrigações legais relativas aos resíduos e foram procuradas práticas aconselhadas para a gestão interna. Para cada uma das fábricas, verificaram-se, quais os resíduos produzidos e analisaram-se os seus percursos, considerando as suas origens, os locais e modos de acondicionamento na origem, os modos de transporte interno, os locais e modos de armazenagem preliminar, e ainda, as quantidades produzidas, os transportadores, os operadores finais e as operações finais de gestão, sendo que estas quatro últimas informações são relativas ao ano 2013. De seguida procedeu-se à realização da auditoria nas diferentes unidades, verificando o cumprimento dos requisitos legais e das boas práticas em matéria de gestão de resíduos. As principais não conformidades detectadas, comuns às várias unidades fabris foram a inexistência de local/recipiente definido para acondicionamento de alguns resíduos, a falta ou insuficiente identificação de recipientes/zonas de acondicionamento, a inexistência de bacias de retenção para resíduos líquidos perigosos, o facto de no transporte interno apenas os resíduos perigosos serem cobertos e, os resíduos líquidos perigosos não serem transportados sobre bacias de retenção móveis nem com o material necessário para absorver derrames. Para cada resíduo e para cada unidade industrial foram propostas medidas correctivas e/ou de melhoria, quando aplicável. Relativamente à armazenagem preliminar, a principal inconformidade detectada foi o facto de todos os parques (quatro) possuírem resíduos perigosos no momento das auditorias, o que não é adequado. Foram propostas medidas correctivas e/ou de melhoria para cada parque. Como proposta global, tendo em conta factores económicos e de segurança, sugeriu-se que apenas o parque de resíduos perigosos possa armazenar este tipo de resíduos, pelo que os procedimentos de transporte interno devem ser melhorados, fazendo com que estes resíduos sejam transportados directamente para o parque de resíduos perigosos. Desta forma dois dos parques devem sofrer algumas remodelações, nomeadamente serem cobertos e fechados, ainda que não totalmente, e o parque de resíduos perigosos deve ser fechado, mantendo aberturas para ventilação, deve ser equipado com kit´s de contenção de derrames, fichas de segurança, procedimentos a realizar em caso de emergência, e ainda, devido ao facto do sistema de contenção de derrames ser pequeno face ao total de armazenamento, aconselha-se o uso de bacias de retenção para alguns dos recipientes de resíduos líquidos perigosos. Ao longo deste processo e em consequência da realização da auditoria, algumas situações consideradas não conformes foram sendo corrigidas. Também foram preparadas instruções de trabalho adequadas que serão posteriormente disponibilizadas. Foi ainda elaborada uma metodologia de avaliação de processos como base de trabalho para redução dos resíduos gerados. A etapa escolhida para a aplicação da mesma foi uma etapa auxiliar do processo produtivo da Monteiro, Ribas - Revestimentos, S.A - a limpeza de cubas com solventes, por forma a tentar minimizar os resíduos de solventes produzidos nesta operação. Uma vez que a fábrica já realiza a operação tendo em consideração medidas de prevenção e reutilização, a reciclagem é neste momento a única forma de tentar minimizar os resíduos de solventes. Foram então estudadas duas opções, nomeadamente a aquisição de um equipamento de regeneração de solventes e a contratação de uma operadora que proceda à regeneração dos resíduos de solventes e faça o retorno do solvente regenerado. A primeira opção poderá permitir uma redução de cerca de 95% na produção de resíduos de solventes e na aquisição de solvente puro, estimando-se uma poupança anual de cerca de **** €, com um período de recuperação do capital de cerca de 16 meses e a segunda pode conduzir a uma redução significativa na aquisição de solvente puro, cerca de 65%, e a uma poupança anual de cerca de **** €.
Resumo:
We address a real world scheduling problem concerning the repair process of aircrafts’ engines by TAP - Maintenance & Engineering (TAP-ME). TAP-ME is the maintenance, repair and overhaul organization of TAP Portugal, Portugal’s leading airline, which employs about 4000 persons to provide maintenance and engineering services in aircraft, engines and components. TAP-ME is aiming to optimize its maintenance services, focusing on the reduction of the engines repair turnaround time.
Resumo:
In this talk, we discuss a scheduling problem that originated at TAP - Maintenance & Engineering - the maintenance, repair and overhaul organization of Portugal’s leading airline. In the repair process of aircrafts’ engines, the operations to be scheduled may be executed on a certain workstation by any processor of a given set, and the objective is to minimize the total weighted tardiness. A mixed integer linear programming formulation, based on the flexible job shop scheduling, is presented here, along with computational experiment on a real instance, provided by TAP-ME, from a regular working week. The model was also tested using benchmarking instances available in literature.
Resumo:
Dissertação apresentada para a obtenção do Grau de Doutor em Informática
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Dissertação apresentada ao Instituto Superior de Contabilidade e Administração do Porto para a obtenção do Grau de Mestre em Gestão das Organizações, Ramo de Gestão de Empresas Orientada por Prof. Doutor Eduardo Manuel Lopes de Sá e Silva Coorientada pela Mestre Maria de Fátima Mendes Monteiro Esta dissertação não inclui as críticas e sugestões feitas pelo Júri.