812 resultados para COBALT-FERRITE NANOPARTICLES
Resumo:
Al2O3 is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm and nanowire 2-6 nm × 200-400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50% hemolysis (HC50) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al2O3, but not on Al2O3. The drop in HC50 correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles, and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.
Resumo:
Al2O3 is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm and nanowire 2-6 nm × 200-400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50% hemolysis (HC50) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al2O3, but not on Al2O3. The drop in HC50 correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles, and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.
Resumo:
Spherical carbon coated iron particles of nanometric diameter in the 5-10 nm range have been produced by arc discharge at near-atmospheric pressure conditions (using 5-8·10 4 Pa of He). The particles exhibit a crystalline dense iron core with an average diameter 7.4 ± 2.0 nm surrounded by a sealed carbon shell, shown by transmission electron microscopy (TEM), selected-area diffrac- tion (SAED), energy-dispersive X-ray analysis (STEM-EDX) and electron energy loss spectroscopy (EELS). The SAED, EDX and EELS results indicate a lack of traces of core oxidized phases showing an efficient protection role of the carbon shell. The magnetic properties of the nanoparticles have been investigated in the 5-300 K temperature range using a superconducting quantum interference device (SQUID). The results reveal a superparamagnetic behaviour with an average monodomain diameter of 7.6 nm of the nanoparticles. The zero field cooled and field cooled (ZFC-FC)magnetization curves show a blocking temperature (TB)at room temperature very suitable for biomedical applications (drug delivery, magnetic resonance imaging-MRI-, hyperthermia).
Resumo:
The process of hydrogen desorption from amorphous silicon (ɑ-Si) nanoparticles grown by plasmaenhanced chemical vapor deposition (PECVD) has been analyzed by differential scanning calorimetry (DSC), mass spectrometry, and infrared spectroscopy, with the aim of quantifying the energy exchanged. Two exothermic peaks centered at 330 and 410 °C have been detected with energies per H atom of about 50 meV. This value has been compared with the results of theoretical calculations and is found to agree with the dissociation energy of Si-H groups of about 3.25 eV per H atom, provided that the formation energy per dangling bond in ɑ-Si is about 1.15 eV. It is shown that this result is valid for ɑ-Si:H films, too
Resumo:
Potentiometric studies of sulfathiazole (HST) in the presence and absence of cobalt(II) were performed. Equilibrium constants for the formation of the detected species, [Co(ST)]+ and [Co(ST)(OH)], are reported. UV-Vis spectrophotometric measurements suggest that the coordination Co(II)-sulfathiazole might be through a N atom, which, in agreement with MO calculations, could be a thiazolic one. In spite of sulfonamides being better ligands at pH >7, [Co(ST)]+ was found at pH » 3.
Resumo:
The immune system is the responsible for body integrity and prevention of external invasion. On one side, nanoparticles are no triggers that the immune system is prepared to detect, on the other side it is known that foreign bodies, not only bacteria, viruses and parasites, but also inorganic matter, can cause various pathologies such as silicosis, asbestosis or inflammatory reactions. Therefore, nanoparticles entering the body, after interaction with proteins, will be either recognized as self-agents or detected by the immune system, encompassing immunostimulation or immunosuppression responses. The nature of these interactions seems to be dictated not specially by the composition of the material but by modifications of NP coating (composition, surface charge and structure). Herein, we explore the use of gold nanoparticles as substrates to carry multifunctional ligands to manipulate the immune system in a controlled manner, from undetection to immunostimulation. Murine bone marrow macrophages can be activated with artificial nanometric objects consisting of a gold nanoparticle functionalized with peptides. In the presence of some conjugates, macrophage proliferation was stopped and pro-inflammatory cytokines were induced. The biochemical type of response depended on the type of conjugated peptide and was correlated with the degree of ordering in the peptide coating. These findings help to illustrate the basic requirements involved in medical NP conjugate design to either activate the immune system or hide from it, in order to reach their targets before being removed by phagocytes. Additionally, it opens up the possibility to modulate the immune response in order to suppress unwanted responses resulting from autoimmunity, or allergy or to stimulate protective responses against pathogens.
Resumo:
Objectives: To examine the safety and effectiveness of cobalt-chromium everolimus eluting stents compared with bare metal stents. Design: Individual patient data meta-analysis of randomised controlled trials. Cox proportional regression models stratified by trial, containing random effects, were used to assess the impact of stent type on outcomes. Hazard ratios with 95% confidence interval for outcomes were reported. Data sources and study selection: Medline, Embase, the Cochrane Central Register of Controlled Trials. Randomised controlled trials that compared cobalt-chromium everolimus eluting stents with bare metal stents were selected. The principal investigators whose trials met the inclusion criteria provided data for individual patients. Primary outcomes: The primary outcome was cardiac mortality. Secondary endpoints were myocardial infarction, definite stent thrombosis, definite or probable stent thrombosis, target vessel revascularisation, and all cause death. Results: The search yielded five randomised controlled trials, comprising 4896 participants. Compared with patients receiving bare metal stents, participants receiving cobalt-chromium everolimus eluting stents had a significant reduction of cardiac mortality (hazard ratio 0.67, 95% confidence interval 0.49 to 0.91; P=0.01), myocardial infarction (0.71, 0.55 to 0.92; P=0.01), definite stent thrombosis (0.41, 0.22 to 0.76; P=0.005), definite or probable stent thrombosis (0.48, 0.31 to 0.73; P<0.001), and target vessel revascularisation (0.29, 0.20 to 0.41; P<0.001) at a median follow-up of 720 days. There was no significant difference in all cause death between groups (0.83, 0.65 to 1.06; P=0.14). Findings remained unchanged at multivariable regression after adjustment for the acuity of clinical syndrome (for instance, acute coronary syndrome v stable coronary artery disease), diabetes mellitus, female sex, use of glycoprotein IIb/IIIa inhibitors, and up to one year v longer duration treatment with dual antiplatelets. Conclusions: This meta-analysis offers evidence that compared with bare metal stents the use of cobalt-chromium everolimus eluting stents improves global cardiovascular outcomes including cardiac survival, myocardial infarction, and overall stent thrombosis.
Resumo:
Objectives: To examine the safety and effectiveness of cobalt-chromium everolimus eluting stents compared with bare metal stents. Design: Individual patient data meta-analysis of randomised controlled trials. Cox proportional regression models stratified by trial, containing random effects, were used to assess the impact of stent type on outcomes. Hazard ratios with 95% confidence interval for outcomes were reported. Data sources and study selection: Medline, Embase, the Cochrane Central Register of Controlled Trials. Randomised controlled trials that compared cobalt-chromium everolimus eluting stents with bare metal stents were selected. The principal investigators whose trials met the inclusion criteria provided data for individual patients. Primary outcomes: The primary outcome was cardiac mortality. Secondary endpoints were myocardial infarction, definite stent thrombosis, definite or probable stent thrombosis, target vessel revascularisation, and all cause death. Results: The search yielded five randomised controlled trials, comprising 4896 participants. Compared with patients receiving bare metal stents, participants receiving cobalt-chromium everolimus eluting stents had a significant reduction of cardiac mortality (hazard ratio 0.67, 95% confidence interval 0.49 to 0.91; P=0.01), myocardial infarction (0.71, 0.55 to 0.92; P=0.01), definite stent thrombosis (0.41, 0.22 to 0.76; P=0.005), definite or probable stent thrombosis (0.48, 0.31 to 0.73; P<0.001), and target vessel revascularisation (0.29, 0.20 to 0.41; P<0.001) at a median follow-up of 720 days. There was no significant difference in all cause death between groups (0.83, 0.65 to 1.06; P=0.14). Findings remained unchanged at multivariable regression after adjustment for the acuity of clinical syndrome (for instance, acute coronary syndrome v stable coronary artery disease), diabetes mellitus, female sex, use of glycoprotein IIb/IIIa inhibitors, and up to one year v longer duration treatment with dual antiplatelets. Conclusions: This meta-analysis offers evidence that compared with bare metal stents the use of cobalt-chromium everolimus eluting stents improves global cardiovascular outcomes including cardiac survival, myocardial infarction, and overall stent thrombosis.
Resumo:
We carried out an electrochemical study of the cobalt electrodeposition onto glassy carbon electrode from an aqueous solution containing 10-2 M of CoSO4 + 1 M (NH4)2SO4 at natural pH 4.5. The potentiostatic study indicated a progressive 3D nucleation and growth during the deposition process. The average diffusion coefficient calculated for this system was 2.65 X 10-6 cm² s-1 while the ΔG for the formation of stable nucleus was 6.50 X 10-20 J/nuclei. The scanning electron microscopy images indicated the formation of small and homogeneous nucleus onto GCE of approximately 300 nm.
pH effect on the synthesis of magnetite nanoparticles by the chemical reduction-precipitation method
Resumo:
This work aimed at putting in evidence the influence of the pH on the chemical nature and properties of the synthesized magnetic nanocomposites. Saturation magnetization measurements evidenced a marked difference of the magnetic behavior of samples, depending on the final pH of the solution after reaction. Magnetite and maghemite in different proportions were the main magnetic iron oxides actually identified. Synthesis with final pH between 9.7-10.6 produced nearly pure magnetite with little or no other associated iron oxide. Under other synthetic conditions, goethite also appears in proportions that depended upon the pH of the synthesis medium.
Resumo:
It was carried out an electrochemical study of the cobalt electrodeposition onto HOPG electrode from an aqueous solution containing 10-2 M of CoSO4 + 1M (NH4)2SO4. Nucleation parameters such as nucleation rate, density of active nucleation sites, saturation nucleus and the rate constant of the proton reduction reaction (kPR) were determined from potentiostatic studies. An increase in kPR values with the decrease in the applied potential suggested a competition between H+ and Co2+ by the active sites on the surface. The ΔG energy calculated for the formation of stable nucleus was 8.21x10-21 J/nuclei. The AFM study indicated the formation of small clusters of 50-400 nm in diameter and 2-120 nm in height.
Resumo:
Hydrogels micro, sub-micro and nanoparticles are of great interest for drug encapsulation and delivery or as embolotherapic agents. In this work it is described the preparation of nano and sub-microparticles of pre-formed, high molecular weight and monomer free poly(N-vinyl-2-pyrrolidone) encapsulated inside the core of lecithin vesicles. The hydrogel particles are formed with a very narrow diameter distribution, of about 800 nm, and a moderate swelling ratio, of approximately 10.
Resumo:
A derivative spectrophotometric method was validated for quantification of acyclovir in poly (n-butylcyanoacrylate) (PBCA) nanoparticles. Specificity, linearity, precision, accuracy, recovery, detection (LOD) and quantification (LOQ) limits were established for method validation. First-derivative at 295.2 nm eliminated interferences from nanoparticle ingredients and presented linearity for acyclovir concentrations ranging from 1.25 to 40.0 µg/mL (r = 0.9999). Precision and accuracy data demonstrated good reproducibility. Recovery ranged from 99.3 to 101.2. LOD was 0.08 µg/mL and LOQ, 0.25 µg/mL. Thus, the proposed method proved to be easy, low cost, and accurate, and therefore, an useful alternative to quantify acyclovir in nanoparticles.
Resumo:
Indium tin oxide nanoparticles were synthesized in two different sizes by a nonhydrolytic sol-gel method. These powders were then transformed into ITO via an intermediate metastable state at between 300 and 600 ºC. The presence of characteristic O-In-O and O-Sn-O bands at 480 and 670 cm-1 confirmed the formation of ITO. The X-ray diffraction patterns indicated the preferential formation of metastable hexagonal phase ITO (corundum type) as opposed to cubic phase ITO when the reflux time was less than 3 h and the heat treatment temperature was below 600 ºC. Particle morphology and crystal size were examined by scanning electron microscopy.
Resumo:
In this study, bioactive hydroxyapatite nanoparticles were prepared by two different methods: wet chemical precipitation and biomimetic precipitation. The aim was to evaluate the morphology, particle-size, crystallinity and phases of the powders obtained by traditional wet chemical precipitation and the novel biomimetic precipitation using a supersaturated calcium solution. The nanoparticles were investigated by transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The results revealed that the nanoparticles were formed by hydroxyapatite with a high crystallinity and controlled morphology. Additionally, it was found that the shape and size of the nanoparticles can be modified with each preparation method.