771 resultados para CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOFISICA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water still represents, on its critical properties and phase transitions, a problem of current scientific interest, as a consequence of the countless open questions and of the inadequacy of the existent theoretical models, mainly related to the different solid and liquid phases that this substance possesses. For example, there are 13 known crystalline forms of water, and also amorphous phases. One of them, the amorphous ice of very high density (VHDA), was just recently observed. Other example is the anomalous behavior in the macroscopic density, which presents a maximum at the temperature of 277 K. In order to experimentally investigate the behavior of one of the liquid-solid phase transitions, the anomaly in its density and also the metastability, we used three different cooling techniques and, as comparison systems, we made use of the solvents: acetone and ethyl alcohol. The first studied cooling system employ a Peltier plate, a device recently developed, which makes use of small cubes made up of semiconductors to change heat among two surfaces; the second system is a commercial refrigerator, similar to the residential ones. Finally, the liquid nitrogen technique, which is used to refrigerate the samples in a container, in two ways: a very fast and other one, almost static. In those three systems, three Beckers of aluminum were used (with a volume of 80 ml, each), containing water, alcohol and acetone. They were closed and maintained at atmospheric pressure. Inside of each Becker were installed three thermocouples, disposed along the vertical axis of the Beckers, one close to the inferior surface, other to the medium level and the last one close the superior surface. A system of data acquisition was built via virtual instrumentation using as a central equipment a Data-Acquisition board. The temperature data were collected by the three thermocouples in the three Beckers, simultaneously, in function of freezing time. We will present the behavior of temperature versus freezing time for the three substances. The results show the characterization of the transitions of the liquid

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the 20th century, the acupuncture has spread on occident as a complementary practice of heath care. This fact has motivated the international scientific community to invest in research that seek to understand why acupuncture works. In this work we compare statistically volt age fluctuation of bioelectric signals caught on the skin at an acupuncture point (IG 4) another nearby on acupuncture point. The acquisition of these signals was performed utilizing an electronic interface with a computer, which was based on an instrumentation amplifier designed with adequate specifications to this end. On the collected signals from a sample of 30 volunteers we have calculated major statistics and submitted them to pairing t-test with significance leveI a = O, 05. We have estimated to bioelectric signals the following parameters: standard deviation, asymmetry and curtose. Moreover, we have calculated the self-correlation function matched by on exponential curve we have observed that the signal decays more rapidly from a non-acupoint then from an acupoint. This fact is an indicative of the existence of information in the acupoint

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eect of finite size on the magnetic properties of ferromagnetic particles systems is a recurrent subject. One of the aspects wide investigated is the superparamagnetic limit where the temperature destroys the magnetic order of ferromagnetic small particles. Above the block temperature the thermal value of the magnetic moment of the particle vanishes, due to thermal fluctuations. The value of the blocking temperature diminishes when the size of the particle is reduced, reecting the reduction of the anisotropy energy barrier between the uniform states along the uniaxial axis. The increasing demand for high density magnetic media has recently attracted great research interest in periodic arrangements of nanometric ferromagnetics particles, approach in the superparamagnetic limit. An interesting conjecture is the possibility of stabilization of the magnetic order of small ferromagnetic particles (F) by interface coupling with antiferromagnetic (AF) substrate. These F/AF systems may also help to elucidate some details of the eect of exchange bias, because the eect of interface roughness and the paper of domain walls, either in the substrate or the particle, are significantly reduced. We investigate the magnetic phases of small ferromagnetic particles on a antiferromagnetic substrate. We use a self-consistent local field method, incorporating the interfaceeld and the dipole interaction between the spins of the ferromagnetic particle. Our results indicate that increasing the area of the interface favors the formation of the uniform state. Howere above a critical height value appears a state non-uniform is formed where the spins of in the particle s free surface are rotated with respect to the interface spins direction. We discuss the impact of the competition between the dipolar and interfaceeld on the magnetic charge, that controls theeld of flux leakage of the particle, and on the format of the hysteresis curves. Our results indicate that the liquid magnetic charge is not a monotonically increasing function of the height of the particle. The exchange bias may display anomalous features, induced for the dipolar field of the spins near the F/AF interface

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O processamento de registros sísmicos é uma tarefa muito importante dentro da Geofísica e que representa um desafio permanente na exploração de petróleo. Embora esses sinais forneçam uma imagem adequada da estrutura geológica do subsolo, eles são contaminados por ruídos e, o ground roll é a componente principal. Este fato exige um esforço grande para o desenvolvimento de metodologias para filtragem, Dentro desse contexto, este trabalho tem como objetivo apresentar um método de remoção do ruído ground roll fazendo uso de ferramentas da Física Estatística. No método, a Análise em Ondeletas é combinada com a Transformada de Karhunen-Loève para a remoção em uma região bem localizada. O processo de filtragem começa com a Decomposição em Multiescala. Essa técnica permite uma representação em tempo-escala fazendo uso das ondeletas discretas implementadas a filtros de reconstrução perfeita. O padrão sísmico original fica representado em multipadrões: um por escala. Assim, pode-se atenuar o ground roll como uma operação cirúrgica em cada escala, somente na região onde sua presença é forte, permitindo preservar o máximo de informações relevantes. A atenuação é realizada pela definição de um fator de atenuação Af. Sua escolha é feita pelo comportamento dos modos de energia da Transformada de Karhunen-Loève. O ponto correspondendo a um mínimo de energia do primeiro modo é identificado como um fator de atenuação ótimo

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we study some problems related to petroleum reservoirs using methods and concepts of Statistical Physics. The thesis could be divided percolation problem in random multifractal support motivated by its potential application in modelling oil reservoirs. We develped an heterogeneous and anisotropic grid that followin two parts. The first one introduce a study of the percolations a random multifractal distribution of its sites. After, we determine the percolation threshold for this grid, the fractal dimension of the percolating cluster and the critical exponents ß and v. In the second part, we propose an alternative systematic of modelling and simulating oil reservoirs. We introduce a statistical model based in a stochastic formulation do Darcy Law. In this model, the distribution of permeabilities is localy equivalent to the basic model of bond percolation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoelectric Refrigerators (TEC Thermoelectric Cooling) are solid-state heat pumps used in applications where stabilization of temperature cycles or cooling below the room temperature are required. TEC are based on thermoelectric devices, and these in turn, are based on the Peltier effect, which is the production of a difference in temperature when an electric current is applied to a junction formed by two non-similar materials. This is one of the three thermoelectric effects and is a typical semiconductor junction phenomenon. The thermoelectric efficiency, known as Z thermoelectric or merit figure is a parameter that measures the quality of a thermoelectric device. It depends directly on electrical conductivity and inversely on the thermal conductivity. Therefore, good thermoelectric devices have typically high values of electrical conductivity and low values of thermal conductivity. One of the most common materials in the composition of thermoelectric devices is the semiconductor bismuth telluride (Bi2Te3) and its alloys. Peltier plates made up by crystals of semiconductor P-type and N-type are commercially available for various applications in thermoelectric systems. In this work, we characterize the electrical properties of bismuth telluride through conductivity/resistivity of the material, and X-rays power diffraction and magnetoresistance measurements. The results were compared with values taken from specific literature. Moreover, two techniques of material preparation, and applications in refrigerators, are discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-precision calculations of the correlation functions and order parameters were performed in order to investigate the critical properties of several two-dimensional ferro- magnetic systems: (i) the q-state Potts model; (ii) the Ashkin-Teller isotropic model; (iii) the spin-1 Ising model. We deduced exact relations connecting specific damages (the difference between two microscopic configurations of a model) and the above mentioned thermodynamic quanti- ties which permit its numerical calculation, by computer simulation and using any ergodic dynamics. The results obtained (critical temperature and exponents) reproduced all the known values, with an agreement up to several significant figures; of particular relevance were the estimates along the Baxter critical line (Ashkin-Teller model) where the exponents have a continuous variation. We also showed that this approach is less sensitive to the finite-size eects than the standard Monte-Carlo method. This analysis shows that the present approach produces equal or more accurate results, as compared to the usual Monte Carlo simulation, and can be useful to investigate these models in circumstances for which their behavior is not yet fully understood

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ferromagnetic and antiferromagnetic Ising model on a two dimensional inhomogeneous lattice characterized by two exchange constants (J1 and J2) is investigated. The lattice allows, in a continuous manner, the interpolation between the uniforme square (J2 = 0) and triangular (J2 = J1) lattices. By performing Monte Carlo simulation using the sequential Metropolis algorithm, we calculate the magnetization and the magnetic susceptibility on lattices of differents sizes. Applying the finite size scaling method through a data colappse, we obtained the critical temperatures as well as the critical exponents of the model for several values of the parameter α = J2 J1 in the [0, 1] range. The ferromagnetic case shows a linear increasing behavior of the critical temperature Tc for increasing values of α. Inwhich concerns the antiferromagnetic system, we observe a linear (decreasing) behavior of Tc, only for small values of α; in the range [0.6, 1], where frustrations effects are more pronunciated, the critical temperature Tc decays more quickly, possibly in a non-linear way, to the limiting value Tc = 0, cor-responding to the homogeneous fully frustrated antiferromagnetic triangular case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a theoretical study of magnetic bilayers composed by a ferromagnetic film grown in direct contact on an antiferromagnetic one. We have investigated the interface effects in this systems due to the interfilms coupling. We describe the interface effects by a Heisenberg like coupling with an additional unidirectional anisotropy. In the first approach we assume that the magnetic layers are thick enough to be described by the bulk parameters and they are coupled through the interaction between the magnetic moments located at the interface. We use this approach to calculate the modified dynamical response of each material. We use the magnetic permeability of the layers (with corrections introduced by interface interactions) to obtain a correlation between the interface characteristics and the physical behavior of the magnetic excitations propagating in the system. In the second model, we calculated an effective susceptibility of the system considering a nearly microscopical approach. The dynamic response obtained by this approach was used to study the modifications in the spectrum of the polaritons and its consequences on the attenuated total reflection (ATR). In addition, we have calculated the oblique reflectivity. We compare our result with those obtained for the dispersion relation of the magnetostatic modes in these systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is a detailed study of self-similar models for the expansion of extragalactic radio sources. A review is made of the definitions of AGN, the unified model is discussed and the main characteristics of double radio sources are examined. Three classification schemes are outlined and the self-similar models found in the literature are studied in detail. A self-similar model is proposed that represents a generalization of the models found in the literature. In this model, the area of the head of the jet varies with the size of the jet with a power law with an exponent γ. The atmosphere has a variable density that may or may not be spherically symmetric and it is taken into account the time variation of the cinematic luminosity of the jet according to a power law with an exponent h. It is possible to show that models Type I, II and III are particular cases of the general model and one also discusses the evolution of the sources radio luminosity. One compares the evolutionary curves of the general model with the particular cases and with the observational data in a P-D diagram. The results show that the model allows a better agreement with the observations depending on the appropriate choice of the model parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, we have studied the nature of the physical processes of the coronal heating, considering as basis significant samples of single and binary evolved stars, that have been achieved with the ROSAT satellite. In a total of 191 simple stars were studied, classified in the literature as giants with spectral type F, G and K. The results were compared with those obtained from 106 evolved stars of spectral type F, G and K, which belong to the spectroscopic binary systems. Accurate measurements on rotation and information about binarity were obtained from De Medeiros s catalog. We have analysed the behavior of the coronal activity in function of diverse stellar parameters. With the purpose to better clarify the profile of the stars evolution, the HR diagram was built for the two samples of stars, the single and the binary ones. The evolved traces added in the diagram were obtained from the Toulouse-Geneve code, Nascimento et al. (2000). The stars were segregated in this diagram not only in range of rotational speed but also in range of X-ray flux. Our analysis shows clearly that the single stars and the binary ones have coronal activity controlled by physical process independent on the rotation. Non magnetic processes seem to be strongly influencing the coronal heating. For the binary stars, we have also studied the behavior of the coronal emission as a function of orbital parameters, such as period and eccentricity, in which it was revealed the existence of a discontinuity in the emission of X-rays around an orbital period of 100 days. The study helped to conclude that circular orbits of the binary stars are presented as a necessary property for the existence of a higher level ofX-rays emission, suggesting that the eect of the gravitational tide has an important role in the coronal activity level. When applied the Kolmogorov-Smirnov test (KS test ) for the Vsini and FX parameters to the samples of single and binary stars, we could evidence very relevant aspects for the understanding of the mechanisms inherent to the coronal activity. For the Vsini parameter, the differences between the single stars and the binary ones for rotation over 6.3 km/s were really remarkable. We believe, therefore, that the existence of gravitational tide is, at least, one of the factors that most contribute for this behavior. About the X-rays flux, the KS test showed that the behavior of the single and the binary stars, regarding the coronal activity, comes from the same origin

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we have studied the problem of percolation in a multifractal geometric support, in its different versions, and we have analysed the conection between this problem and the standard percolation and also the connection with the critical phenomena formalism. The projection of the multifractal structure into the subjacent regular lattice allows to map the problem of random percolation in the multifractal lattice into the problem of correlated percolation in the regular lattice. Also we have investigated the critical behavior of the invasion percolation model in this type of environment. We have discussed get the finite size eects

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Important advances have been made along the last decade in the study of the lithium behavior in solar-type stars. Among the most important discoveries what attracts attention is that the distribution of lithium abundance in the late F-type giant stars tends to be discontinuous, at the same time of a sudden decline in rotation and a gradual decline according to the temperature for giant red stars of such spectral type. Other studies have also shown that synchronized binary systems with evolved components seem to keep more of their original lithium than the unsynchronized systems. evertheless, the connection between rotation and lithium abundance as well as the role of tidal effects on lithium dilution seem to be more complicated matters, depending on mass, metallicity and age. This work brings an unprecedented study about the behavior of lithium abundance in solartype evolved stars based on an unique sample of 1067 subgiant, giant and supergiant stars, 236 of them presenting spectroscopic binary characteristics, with precise lithium abundance and projected rotational speed. Now the lithium-rotation connection for single and binary evolved stars is analyzed taking into account the role of mass and stellar age

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complex behavior of a wide variety of phenomena that are of interest to physicists, chemists, and engineers has been quantitatively characterized by using the ideas of fractal and multifractal distributions, which correspond in a unique way to the geometrical shape and dynamical properties of the systems under study. In this thesis we present the Space of Fractals and the methods of Hausdorff-Besicovitch, box-counting and Scaling to calculate the fractal dimension of a set. In this Thesis we investigate also percolation phenomena in multifractal objects that are built in a simple way. The central object of our analysis is a multifractal object that we call Qmf . In these objects the multifractality comes directly from the geometric tiling. We identify some differences between percolation in the proposed multifractals and in a regular lattice. There are basically two sources of these differences. The first is related to the coordination number, c, which changes along the multifractal. The second comes from the way the weight of each cell in the multifractal affects the percolation cluster. We use many samples of finite size lattices and draw the histogram of percolating lattices against site occupation probability p. Depending on a parameter, ρ, characterizing the multifractal and the lattice size, L, the histogram can have two peaks. We observe that the probability of occupation at the percolation threshold, pc, for the multifractal is lower than that for the square lattice. We compute the fractal dimension of the percolating cluster and the critical exponent β. Despite the topological differences, we find that the percolation in a multifractal support is in the same universality class as standard percolation. The area and the number of neighbors of the blocks of Qmf show a non-trivial behavior. A general view of the object Qmf shows an anisotropy. The value of pc is a function of ρ which is related to its anisotropy. We investigate the relation between pc and the average number of neighbors of the blocks as well as the anisotropy of Qmf. In this Thesis we study likewise the distribution of shortest paths in percolation systems at the percolation threshold in two dimensions (2D). We study paths from one given point to multiple other points