911 resultados para CARCINOMA CELLS
Resumo:
We studied both eyes of a 66-year-old man with retinal degeneration and oat cell carcinoma of the bronchus. Retinal degeneration was most marked peripheral to the parafovea where photoreceptor cells and their outer segments were absent. Within the parafovea, photoreceptor cells remained but rod outer segments were absent and cone outer segments were fragmented and disorganized. The retinal pigment epithelium contained many immature melanin granules within melanolysosomes, suggesting abnormal melanin synthesis and resorption. We suggest that a pharmacologically active substance resembling a hormone produced by the tumor increased melanin synthesis in the pigment epithelium and that the increased melanin content in these cells compromised their ability to phagocytose and maintain normal turnover of photoreceptor outer segments. We believe these changes led to photoreceptor outer segment loss and subsequent degeneration of the photoreceptor cells.
Resumo:
Erythropoiesis is maintained by the hormone erythropoietin (Epo) binding to its cognate receptor (EpoR) on erythroid progenitor cells. The Epo-EpoR interaction initiates a signal transduction process that regulates the survival, growth and differentiation of these cells. Originally perceived as highly lineage-restricted, Epo is now recognised to have pleiotropic effects extending beyond the maintenance of red cell mass. Functional interactions between Epo and EpoR have been demonstrated in numerous cells and tissues. EpoR expression on neoplastic cells leads to concern that recombinant human erythropoietin, used to treat anaemia in cancer patients, may augment tumour growth. Here we demonstrate that EPO, at pharmacological concentrations, can activate three major signalling cascades, viz. the Jak2/STAT5, Ras/ERK and PI3K/Akt pathways in non-small cell lung carcinoma (NSCLC) cell lines. EpoR synthesis is normally under the control of GATA-1, but NSCLC cells exhibit decreased GATA-1 levels compared to GATA-2, -3 and -6, suggesting that GATA-1 is not essential for EpoR production. The increased Epo-induced signalling was not associated with a growth advantage for the NSCLC cells.
Resumo:
Part 1: The alkaline single-cell gel electrophoresis (comet) assay was used to analyse the integrity and DNA content of exfoliated cells extracted from bladder washing specimens from 9 transitional cell carcinoma patients and 15 control patients. DNA damage, as expressed by % tail DNA and tail moment values, was observed to occur in cells from both control and bladder cancer samples. The extent of the damage was, however, found to be significantly greater in the cancer group than in the control group. Comet optical density values were also recorded for each cell analysed in the comet assay and although differences observed between tumour grades were not found to be statistically significant, the mean comet optical density value was observed to be greater in the cancer group than in the control population studied, These preliminary results suggest that the comet assay may have potential as a diagnostic tool and as a prognostic indicator in transitional cell carcinoma, Part 2: Baseline DNA damage in sperm cells from 13 normozoospermic fertile males, 17 normozoospermic infertile males and 11 asthenozoospermic infertile males were compared using a modified alkaline comet assay technique. No significant difference in the level of baseline DNA damage was observed between the 3 categories of sperm studied; however the untreated sperm cells were observed to display approximately 20% tail DNA. This is notably higher than the background DNA damage observed in somatic cells where the % tail DNA is normally less than 5%. Sperm from the 3 groups of men studied were also compared for sensitivity to DNA breakage, using the modified alkaline comet assay, following X-ray irradiations (5, 10 and 30 Gy) and hydrogen peroxide treatments (40, 100 and 200 mu M). Significant levels of X-ray-induced damage were found relative to untreated control sperm in the two infertile groups following 30 Gy irradiation. Significant damage in hydrogen peroxide-treated sperm was observed in sperm from fertile samples, at 200 mu M and in infertile samples at 100- and 200-mu M doses relative to controls. These results therefore indicate that fertile sperm samples are more resistant to X-ray- and hydrogen peroxide-induced DNA breakage than infertile samples. Further studies involving greater numbers of individuals are currently in progress to confirm these findings.
Resumo:
CCAAT enhancer binding protein α (C/EBPα) plays an essential role in cellular differentiation, growth, and energy metabolism. Here, we investigate the correlation between C/EBPα and hepatocellular carcinoma (HCC) patient outcomes and how C/EBPα protects cells against energy starvation. Expression of C/EBPα protein was increased in the majority of HCCs examined (191 pairs) compared with adjacent nontumor liver tissues in HCC tissue microarrays. Its upregulation was correlated significantly with poorer overall patient survival in both Kaplan-Meier survival (P = 0.017) and multivariate Cox regression (P = 0.028) analyses. Stable C/EBPα-silenced cells failed to establish xenograft tumors in nude mice due to extensive necrosis, consistent with increased necrosis in human C/EBPα-deficient HCC nodules. Expression of C/EBPα protected HCC cells in vitro from glucose and glutamine starvation-induced cell death through autophagy-involved lipid catabolism. Firstly, C/EBPα promoted lipid catabolism during starvation, while inhibition of fatty acid beta-oxidation significantly sensitized cell death. Secondly, autophagy was activated in C/EBPα-expressing cells, and the inhibition of autophagy by ATG7 knockdown or chloroquine treatment attenuated lipid catabolism and subsequently sensitized cell death. Finally, we identified TMEM166 as a key player in C/EBPα-mediated autophagy induction and protection against starvation.
CONCLUSION: The C/EBPα gene is important in that it links HCC carcinogenesis to autophagy-mediated lipid metabolism and resistance to energy starvation; its expression in HCC predicts poorer patient prognosis.
Resumo:
AIMS: Although earlier reports highlighted a tumor suppressor role for manganese superoxide dismutase (MnSOD), recent evidence indicates increased expression in a variety of human cancers including aggressive breast carcinoma. In the present article, we hypothesized that MnSOD expression is significantly amplified in the aggressive breast carcinoma basal subtype, and targeting MnSOD could be an attractive strategy for enhancing chemosensitivity of this highly aggressive breast cancer subtype.
RESULTS: Using MDA-MB-231 and BT549 as a model of basal breast cancer cell lines, we show that knockdown of MnSOD decreased the colony-forming ability and sensitized the cells to drug-induced cell death, while drug resistance was associated with increased MnSOD expression. In an attempt to develop a clinically relevant approach to down-regulate MnSOD expression in patients with basal breast carcinoma, we employed activation of the peroxisome proliferator-activated receptor gamma (PPARγ) to repress MnSOD expression; PPARγ activation significantly reduced MnSOD expression, increased chemosensitivity, and inhibited tumor growth. Moreover, as a proof of concept for the clinical use of PPARγ agonists to decrease MnSOD expression, biopsies derived from breast cancer patients who had received synthetic PPARγ ligands as anti-diabetic therapy had significantly reduced MnSOD expression. Finally, we provide evidence to implicate peroxynitrite as the mechanism involved in the increased sensitivity to chemotherapy induced by MnSOD repression.
INNOVATION AND CONCLUSION: These data provide evidence to link increased MnSOD expression with the aggressive basal breast cancer, and underscore the judicious use of PPARγ ligands for specifically down-regulating MnSOD to increase the chemosensitivity of this subtype of breast carcinoma.
Resumo:
BubR1 is a well-defined guardian of the mitotic spindle, initiating mitotic arrest in response to the lack of tension and/or chromosome alignment across the mitotic plate. However, the role of BubR1 in combretastatin-induced cell death remains unknown. In this study, we describe the effects of combretastatin A-4 (CA-4) and a synthetic cis-restricted 3,4-diaryl-2-azetidinone (ß-lactam) analogue (CA-432) on the modulation and phosphorylation of BubR1 in human cervical cancer-derived cells. We demonstrate that CA-4 and CA-432 depolymerise the microtubular network of human cervical carcinoma-derived cells. Both compounds induced the disassembly of the microtubules and the loss of microtubule tension led to the early phosphorylation of BubR1 and the late cleavage of BubR1. The phosphorylation of BubR1 correlated with the onset of G2M cell cycle arrest whilst the cleavage of BubR1 coincided with apoptosis induced by the combretastatins. The combretastatin-induced apoptosis and the BubR1 cleavage were caspase-dependent. In vitro enzyme digests demonstrated that combretastatin-activated BubR1 is a substrate for caspase-3. Gene silencing of BubR1 with small interfering RNA severely compromised combretastatin-induced G2M cell cycle arrest with a corresponding increase in the formation of polyploid cells in both cervical and breast cancer-derived cells. In summary, BubR1 is required to maintain the G2M arrest and limit the formation of polyploid cells in response to continued combretastatin exposure. Moreover, substitution of the ethylene bridge with 3,4-diaryl-2-azetidinone did not alter the tubulin depolymerising properties or the subsequent mitotic spindle checkpoint response to CA-4 in human cancer cells.
Resumo:
PURPOSE: The development of multi-drug resistance (MDR) due to the expression of members of the ATP binding cassette (ABC) transporter family is a major obstacle in cancer treatment. The broad range of substrate specificities associated with these transporters leads to the efflux of many anti-cancer drugs from tumour cells. Therefore, the development of new chemotherapeutic agents that are not substrates of these transporters is important. We have recently demonstrated that some members of a novel series of pyrrolo-1,5-benzoxazepine (PBOX) compounds are microtubule-depolymerising agents that potently induce apoptosis in several cancer cell lines and impair growth of mouse breast tumours. The aim of this current study was to establish whether PBOXs were capable of inducing apoptosis in cancer cells expressing either P-glycoprotein or breast cancer resistance protein (BCRP), two of the main ABC transporters associated with MDR.
METHODS: We performed in vitro studies to assess the effects of PBOXs on cell proliferation, cell cycle and apoptosis in human cancer cell lines and their drug-resistant substrains expressing either P-glycoprotein or BCRP. In addition, we performed a preliminary molecular docking study to examine interactions between PBOXs and P-glycoprotein.
RESULTS: We established that three representative PBOXs, PBOX-6, -15 and -16 were capable of inducing apoptosis in drug-resistant HL60-MDR1 cells (expressing P-glycoprotein) and HL60-ABCG2 cells (expressing BCRP) with similar potencies as in parental human promyelocytic leukaemia HL60 cells. Likewise, resistance to PBOX-6 and -16 was not evident in P-glycoprotein-expressing A2780-ADR cells in comparison with parent human ovarian carcinoma A2780 cells. Finally, we deduced by molecular docking that PBOX-6 is not likely to form favourable interactions with the substrate binding site of P-glycoprotein.
CONCLUSION: Our results suggest that pro-apoptotic PBOX compounds may be potential candidates for the treatment of P-glycoprotein- or BCRP-associated MDR cancers.
Resumo:
PURPOSE: Some members of a novel series of pyrrolo-1,5-benzoxazepines (PBOXs) are microtubule-targeting agents capable of inducing apoptosis in a variety of human cancerous cells, hence, they are currently being developed as potential anti-cancer agents. The purpose of this study was to first characterise the activities of a novel PBOX analogue, PBOX-16 and then investigate the anti-angiogenic potential of both PBOX-16 and its prototype PBOX-6.
METHODS: The effects of PBOX-6 and -16 on cancerous cells (chronic myeloid leukaemia K562 cells and ovarian carcinoma A2780 cells) and primary cultured human umbilical vein endothelial cells (HUVECs) were examined by assessing cell proliferation, microtubular organisation, DNA analysis of cell cycle progression and caspase-3/7 activity. Their anti-angiogenic properties were then investigated by examining their ability to interfere with HUVEC differentiation into capillary-like structures and vascular endothelial growth factor (VEGF)-stimulated HUVEC migration.
RESULTS: PBOX-6 and -16 inhibited proliferation of K562, A2780 and HUVEC cells in a concentration-dependent manner. PBOX-16, confirmed as a novel depolymerising agent, was approximately tenfold more potent than PBOX-6. Inhibition of cell proliferation was mediated by G(2)/M arrest followed by varying degrees of apoptosis depending on the cell type; endothelial cells underwent less apoptosis than either of the cancer cell lines. In addition to the antitumourigenic properties, we also describe a novel antiangiogenic function for PBOXs: treatment with PBOXs inhibited the spontaneous differentiation of HUVECs into capillary-like structures when grown on a basement membrane matrix preparation (Matrigel™) and also significantly reduced VEGF-stimulated HUVEC migration.
CONCLUSION: Dual targeting of both the tumour cells and the host endothelial cells by PBOX compounds might enhance the anti-cancer efficacy of these drugs.
Resumo:
Members of a novel series of pyrrolo-1,5-benzoxazepine (PBOX) compounds have been shown to induce apoptosis in a number of human leukemia cell lines of different haematological lineage, suggesting their potential as anti-cancer agents. In this study, we sought to determine if PBOX-6, a well characterised member of the PBOX series of compounds, is also an effective inhibitor of breast cancer growth. Two estrogen receptor (ER)-positive (MCF-7 and T-47-D) and two ER-negative (MDA-MB-231 and SK-BR-3) cell lines were examined. The 3,4,5-dimethylthiazol-2-yl-2,5-diphenyl-tetrazolium bromide (MTT) assay was used to determine reduction in cell viability. PBOX-6 reduced the cell viability of all four cell lines tested, regardless of ER status, with IC(50) values ranging from 1.0 to 2.3 microM. PBOX-6 was most effective in the SK-BR-3 cells, which express high endogenous levels of the HER-2 oncogene. Overexpression of the HER-2 oncogene has been associated with aggressive disease and resistance to chemotherapy. The mechanism of PBOX-6-induced cell death was due to apoptosis, as indicated by the increased proportion of cells in the pre-G1 peak and poly(ADP-ribose) polymerase (PARP) cleavage. Moreover, intratumoural administration of PBOX-6 (7.5 mg/kg) significantly inhibited tumour growth in vivo in a mouse mammary carcinoma model (p=0.04, n=5, Student's t-test). Thus, PBOX-6 could be a promising anti-cancer agent for both hormone-dependent and -independent breast cancers.
Resumo:
Clear cell renal cell carcinoma (ccRCC), a tubular epithelial cell (TEC) malignancy, frequently secretes tumor necrosis factor (TNF). TNF signals via two distinct receptors (TNFRs). TNFR1, expressed in normal kidney primarily on endothelial cells, activates apoptotic signaling kinase 1 and nuclear factor-kappaB (NF-kappaB) and induces cell death, whereas TNFR2, inducibly expressed on endothelial cells and on TECs by injury, activates endothelial/epithelial tyrosine kinase (Etk), which trans-activates vascular endothelial growth factor receptor 2 (VEGFR2) to promote cell proliferation. We investigated TNFR expression in clinical samples and function in short-term organ cultures of ccRCC tissue treated with wild-type TNF or specific muteins selective for TNFR1 (R1-TNF) or TNFR2 (R2-TNF). There is a significant increase in TNFR2 but not TNFR1 expression on malignant TECs that correlates with increasing malignant grade. In ccRCC organ cultures, R1-TNF increases TNFR1, activates apoptotic signaling kinase and NF-kappaB, and promotes apoptosis in malignant TECs. R2-TNF increases TNFR2, activates NF-kappaB, Etk, and VEGFR2 and increases entry into the cell cycle. Wild-type TNF induces both sets of responses. R2-TNF actions are blocked by pretreatment with a VEGFR2 kinase inhibitor. We conclude that TNF, acting through TNFR2, is an autocrine growth factor for ccRCC acting via Etk-VEGFR2 cross-talk, insights that may provide a more effective therapeutic approach to this disease.
Resumo:
Invasive urothelial cell carcinoma (UCC) is characterized by increased chromosomal instability and follows an aggressive clinical course in contrast to non-invasive disease. To identify molecular processes that confer and maintain an aggressive malignant phenotype, we used a high-throughput genome-wide approach to interrogate a cohort of high and low clinical risk UCC tumors. Differential expression analyses highlighted cohesive dysregulation of critical genes involved in the G(2)/M checkpoint in aggressive UCC. Hierarchical clustering based on DNA Damage Response (DDR) genes separated tumors according to a pre-defined clinical risk phenotype. Using array-comparative genomic hybridization, we confirmed that the DDR was disrupted in tumors displaying high genomic instability. We identified DNA copy number gains at 20q13.2-q13.3 (AURKA locus) and determined that overexpression of AURKA accompanied dysregulation of DDR genes in high risk tumors. We postulated that DDR-deficient UCC tumors are advantaged by a selective pressure for AURKA associated override of M phase barriers and confirmed this in an independent tissue microarray series. This mechanism that enables cancer cells to maintain an aggressive phenotype forms a rationale for targeting AURKA as a therapeutic strategy in advanced stage UCC.
Resumo:
Histone deacetylases (HDACs) are enzymes involved in transcriptional repression. We aimed to examine the significance of HDAC1 and HDAC2 gene expression in the prediction of recurrence and survival in 156 patients with hepatocellular carcinoma (HCC) among a South East Asian population who underwent curative surgical resection in Singapore. We found that HDAC1 and HDAC2 were upregulated in the majority of HCC tissues. The presence of HDAC1 in tumor tissues was correlated with poor tumor differentiation. Notably, HDAC1 expression in adjacent non-tumor hepatic tissues was correlated with the presence of satellite nodules and multiple lesions, suggesting that HDAC1 upregulation within the field of HCC may contribute to tumor spread. Using competing risk regression analysis, we found that increased cancer-specific mortality was significantly associated with HDAC2 expression. Mortality was also increased with high HDAC1 expression. In the liver cancer cell lines, HEP3B, HEPG2, PLC5, and a colorectal cancer cell line, HCT116, the combined knockdown of HDAC1 and HDAC2 increased cell death and reduced cell proliferation as well as colony formation. In contrast, knockdown of either HDAC1 or HDAC2 alone had minimal effects on cell death and proliferation. Taken together, our study suggests that both HDAC1 and HDAC2 exert pro-survival effects in HCC cells, and the combination of isoform-specific HDAC inhibitors against both HDACs may be effective in targeting HCC to reduce mortality.
Resumo:
O cancro da próstata é o segundo cancro mais frequente e a sexta causa de morte mundial por cancro no sexo masculino. A obesidade tem sido associada ao aumento da incidência e mortalidade por cancro, com alguma controvérsia. As alterações nas expressões de adipocinas associadas à obesidade têm sido um dos diversos mecanismos propostos para explicar a associação entre a obesidade e o cancro da próstata, nomeadamente na promoção do desenvolvimento e progressão celular do tumor. O objetivo deste trabalho é avaliar o efeito dos fatores produzidos pelos pré-adipócitos e os adipócitos na proliferação, migração e invasão das células de carcinoma da próstata independentes dos androgénios. As células RM1 foram cultivadas na presença de diferentes concentrações de insulina e leptina, bem como em meio condicionado (MC) de pré-adipócitos e adipócitos e co-cultivadas em sistema de transwells, com as mesmas células. A proliferação celular das RM1 foi avaliada recorrendo a contagem celular em camara de Neubauer e em citometro de fluxo, e aos ensaios metabólicos alamar blue e XTT. Efetuou-se um ensaio de migração por dano nas células RM1 na presença dos meios condicionados. A invasão das células foi avaliada recorrendo a um sistema de transwells, com membrana de matrigel, quando cultivadas com pré-adipócitos e adipócitos. A insulina aumentou significativamente a proliferação celular, ao contrário da leptina que não teve efeito. O meio condicionado dos pré-adipócitos aumentou ligeiramente a proliferação, enquanto meio condicionado dos adipócitos de 1 e 2 dias aumentou significativamente a proliferação das células RM1 (p<0.01), quando avaliada por XTT. Na câmara de Neubauer não se verificaram diferenças significativas na proliferação celular. Relativamente à migração celular, observou-se um aumento significativo da migração das células RM1 cultivadas com meio condicionado de adipócitos (MCA) e pré-adipócitos (MCPA) em comparação com o controlo (p<0.01). Observou-se um aumento significativo da invasão de células RM1 cultivadas com adipócitos e pré-adipócitos (p <0.05). Os adipócitos aumentaram significativamente a proliferação das células RM1 em co-cultura (p<0.01). Em conclusão, as células RM1 parecem ser influenciadas por fatores secretados pelos adipócitos, capazes de aumentar a sua capacidade de proliferar, invadir e migrar.
Resumo:
Introduction: Le gène O6-méthylguanine-ADN méthyltransferase (MGMT) code pour une enzyme spécifique réparatrice de l’ADN qui protège les cellules de la toxicité des agents alkylants. Ainsi, l’activité du MGMT est un mécanisme majeur de résistance aux agents alkylants. Il a été démontré qu’une diminution de l’expression du gène MGMT par une hyperméthylation du promoteur résulte en une amélioration de la survie chez les patients avec certains types de tumeurs qui sont traitées avec des agents chimiothérapeuthique alkylants. Objectifs: Déterminer la prévalence de la méthylation du gène MGMT chez des patients avec des cancers épidermoïdes localement avancés de la sphère ORL traités avec chimioradiothérapie et évaluer l’impact de cette méthylation sur la survie. Méthodes: Sur 428 patients consécutifs, traités avec chimioradiothérapie à notre institution et suivis pour un période médiane de 37 mois, 199 spécimens chirurgicaux paraffinés ont été récupérés. L’ADN était extrait et modifié par le traitement au bisulfite. Une réaction en chaîne de la polymérase, spécifique à la méthylation était entreprise pour évaluer l’état de méthylation du promoteur du gène du MGMT. Les résultats de laboratoire étaient corrélés avec la réponse clinique. L’analyse statistique était exécutée à l’aide du test de Fisher pour les données catégoriques et à l’aide des courbes de Kaplan-Meier pour les échecs au traitement. Résultats : Des 199 extraits d’ADN initiaux, 173 (87%) étaient modifiés au bisulfite avec succès. Des ces spécimens modifiés, 71 (41%) ont démontré une hyperméthylation du MGMT. Pour les cas de méthylation et nonméthylation du MGMT, les caractéristiques des patients n’étaient pas significativement différentes. Les taux de réponse étaient 71 et 73% (p=NS) respectivement. Le contrôle locorégional était respectivement 87 et 77% (p=0.26), la survie sans maladie était 80 et 60% (p=0.38), la survie sans métastase à distance était 92 et 78% (p=0.08) et la survie globale était 64 et 62% (p=0.99) à 3 ans. Conclusions : L’état de méthylation du MGMT est fortement prévalent (41%) et semble avoir un possible impact bénéfique sur la survie quand la chimioradiothérapie est administrée aux patients avec des stades avancés de cancers tête et cou.
Resumo:
Introducción: El carcinoma de mama es el tumor maligno más frecuente entre las mujeres y representa una significativa mortalidad en los países en vías de desarrollo. Según datos del Instituto Nacional de Cancerología en el 2010 se reportaron 672 nuevos casos de cáncer de mama, lo que representó el 18% de todos los tumores malignos en mujeres. Durante las últimas 3 décadas las técnicas quirúrgicas para el tratamiento del cáncer de mama han presentado un cambio significativo y proponen disminución de procedimientos agresivos y radicales, intervenciones como: mastectomía radical modificada, cirugía conservadora y la disección de ganglio centinela son ejemplos claros de esta evolución asociado al incremento de la reconstrucción mamaria inmediata. Metodología: Estudio observacional tipo cohorte retrospectivo en el cual se revisó una base de datos de pacientes con cáncer de mama de las cuales 632 fueron sometidas a mastectomía radical con preservación de piel y complejo areola-pezón y mastectomía radical con preservación de piel sin preservación del complejo areola-pezón, los dos procedimientos asociados a reconstrucción mamaria inmediata y se comparó la frecuencia de recaída local entre los dos grupos. Resultados: De las 632 pacientes estudiadas al 30.5% se les realizo preservación del complejo areola pezón. Las mujeres a quienes se les realizó preservación del complejo areola pezón presentaron menor sobrevida a la recaída local a 10 años (80.51%) comparado con las mujeres a quienes no se les preservó el complejo areola pezón (87.40%), sin embargo no se encontró diferencia estadísticamente significativa para determinar que las probabilidades de sobrevida sean diferentes. Discusión: No se evidenció diferencia estadísticamente significativa entre los 2 procedimientos quirúrgicos (con y sin preservación del complejo areola pezón) en relación a la recaída local, estudios retrospectivos no han evidenciado una mayor tasa de recaídas locales en pacientes a quienes se les preserva el complejo areola-pezón, sin embargo hacen falta estudios prospectivos y aleatorizados que puedan otorgar un mayor sustento científico que garantice la seguridad de la preservación del complejo areola-pezón.