980 resultados para Biomass, dry mass, standard deviation
Resumo:
A method for the direct determination of Ni in soft drinks by graphite furnace atomic absorption spectrometry using a transversely heated graphite atomizer (THGA), Zeeman-effect background corrector, and Co as the internal standard (IS) is proposed. Magnesium nitrate was used to stabilize both Ni and Co. All diluted samples (1+1) in 0.2% (v/v) HNO3 and reference solutions [5.0-50 mu g L-1 Ni in 0.2% (v/v) HNO3] were spiked with 50 mu g L-1 Co. For a 20-mu L sample dispensed into the atomizer, correlations between the ratio of absorbance of Ni to absorbance of Co and the analyte concentration were close to 0.9996. The relative standard deviation of the measurements varied from 0.5 to 3.4% and 1.0 to 7.0% (n=12) with and without IS, respectively. Recoveries within 98-104% for Ni spikes were obtained using IS. The characteristic mass was calculated as 43 pg Ni and the limit of detection was 1.4 mu g L-1. The accuracy of the method was checked for the direct determination of Ni in soft drinks and the results obtained with IS were better than those without IS.
Resumo:
Bismuth was evaluated as an internal standard for the direct determination of Pb in vinegar by graphite furnace atomic absorption spectrometry using Ru as a permanent modifier with co-injection of Pd/Mg(NO3)(2). The correlation coefficient of the graph plotted from the non-nalized absorbance signals of Bi versus Pb was r=0.989. Matrix effects were evaluated by analyzing the slope ratios between the analytical curve, and analytical curves obtained from Pb additions in red and white wine vinegar obtained from reference solutions prepared in 0.2% (v/v) HNO3, samples. The calculated ratios were around 1.04 and 1.02 for analytical curves established applying an internal standard and 1.3 and 1.5 for analvtical curves without. Analytical curves in the 2.5-15 pg L-1 Pb concentration interval were established using the ratio Pb absorbance to Bi absorbance versus analvte concentration, and typical linear correlations of r=0.999 were obtained. The proposed method was applied for direct determination of Pb in 18 commercial vinegar samples and the Pb concentration varied from 2.6 to 31 pg L-1. Results were in agreement at a 95% confidence level (paired t-test) with those obtained for digested samples. Recoveries of Pb added to vinegars varied from 96 to 108% with and from 72 to 86% without an internal standard. Two water standard reference materials diluted in vinegar sample were also analyzed and results were in agreement with certified values at a 95% confidence level. The characteristic mass was 40 pg Pb and the useful lifetime of the tube was around 1600 firings. The limit of detection was 0.3 mu g L-1 and the relative standard deviation was <= 3.8% and <= 8.3% (n = 12) for a sample containing, 10 mu L-1 Pb with and without internal standard, respectively. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Seasonal variation in the biomass and primary productivity of the periphyton on natural substratum (internodes of Echiiwchloa polystaclya HBK Hitch.) was studied during one year (from August 1993 to July 1994) in a lagoon with permanent connection with a river. We also analysed the relationships between the hydrological regime, climatic conditions and physico-chemical variables of water with the biological compounds of the periphyton. Values of dry mass, ash-free dry mass, chlorophyll a and phaeophytin of periphyton ranged from 0.55±0.24 g m-2 to 7.86±4.93 g m-2; 0.28±0.18 g m-2 to 3.72±2.23 g m-2; 0.57±0.09 mg m-2 to 15.57±4.52 mg m-2; 0.03±0.03 mg m-2 to 4.74±3.46 mg m-2, respectively. The primary productivity of periphytic algae measured by C14 method ranged from 6.45±1.29 mg C m-2 h-1 to 52.88± 7.55 mg C m-2 h-1. The biomass showed a peak in October 1993, February and April 1994. Higher value of primary productivity was recorded in December 1993 and January 1994 and was due to the peculiar light and nutrition conditions during this period. We conclude that biomass and productivity of the community are controlled mainly by hydrological regime (fluctuations of water level). © INTERNATIONAL SCIENTIFIC PUBLICATIONS.
Resumo:
Objective: To verify the behavior of the mineral bone content and density in male adolescents according to age and secondary sexual characters. Methods: 47 healthy adolescents between 10 and 19 years old were assessed according to weight, height, body mass index, puberty stage, calcium intake, bone mineral density and content in the lumbar spine and in the proximal femur. The bone mass was measured through bone densitometries. The intake of calcium was calculated through a 3-day diet. The BMI (body mass index) was calculated with the Quetelet Index and the puberty stage was defined according to Tanner's criteria. The analysis used descriptive statistics such as average and standard deviation, and variance estimates to compare the different age groups. Moreover, the Tukey test was used to determine the significant differences. Results: It was evident that the calcium intake in the different ages assessed has not reached the minimum value of 800 mg. The bone mineral density and content showed an increase after the age of 14, as well as when the teenagers reached the sexual maturation stage G4. The mineralization parameters showed a high level when the teenagers were in the G3 stage, however, without statistical significance. Conclusion: The results indicate an important level of bone mineralization during adolescence. Maturation levels superior to G3 have shown more mineralization. This study proves that the critical years for bone mass gain start after the 14-15 years old or older. Copyright © 2004 by Sociedade Brasileira de Pediatria.
Resumo:
We present the results of the combination of searches for the standard model Higgs boson produced in association with a W or Z boson and decaying into bb̄ using the data sample collected with the D0 detector in pp̄ collisions at √s=1.96TeV at the Fermilab Tevatron Collider. We derive 95% C.L. upper limits on the Higgs boson cross section relative to the standard model prediction in the mass range 100GeV≤M H≤150GeV, and we exclude Higgs bosons with masses smaller than 102 GeV at the 95% C.L. In the mass range 120GeV≤M H≤145GeV, the data exhibit an excess above the background prediction with a global significance of 1.5 standard deviations, consistent with the expectation in the presence of a standard model Higgs boson. © 2012 American Physical Society.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Rocuronium (ROC) is a neuromuscular blocking agent used in surgical procedures which is eliminated primarily by biliary excretion. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for analysis of ROC in human plasma. Separation of ROC and IS (verapamil) was performed using an endcapped C-18 column and a mixture of water:acetonitrile:trifluoracetic acid (50:50:0.1, v/v) as mobile phase. Aliquots of 100 mu L of human plasma were extracted at pH 3, using dichloromethane. The lower limit of quantification of 5 ng/mL shows the high sensitivity of this method. Intra- and inter-assay precision (as relative standard deviation) was all <= 14.2% and accuracy (as relative standard error) did not exceed 10.1%. The validated method was successfully applied to quantify ROC concentrations in patients under surgical procedures up to 6 h after the administration of the 0.4-0.9 mg/kg ROC. The pharmacokinetic parameter estimations of ROC showed AUC/dose of 563 mu g min/mL, total clearance of 2.5 mL/min/kg, volume of distribution at steady state of 190 mL/kg and mean residence time of 83 min. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Direct immersion SPME-GC-MS-MS was used for the analysis of steroids in water at part-per-trillion(ppt) and lower concentrations. The method was validated and extended to real sample analysis. The method were linear from 0.01 to 5 ng/ml with precision less than 10% relative standard deviation for a steroid mixture at 1 ng/ml. Limit of quantitation and limit of detection was found to be 200- 1200 pg/L and 30-200 pg/L respectively and recoveries ranged from 88-103 %. To understand the extraction efficiency of the fiber, a depletion study was performed. The fiber/ sample partition coefficients for the steroids were determined to be 1.0 x 104 to 1.5 x 104 . The extraction was performed without derivatization or the use of an internal standard. SPMEGC-MS-MS effectively demonstrated ultra-trace level detection of steroids in water.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: To identify spatial patterns in rates of admission for pneumonia among children and relate them to the number of fires reported in the state of Mato Grosso, Brazil. Methods: We conducted an ecological and exploratory study of data from the state of Mato Grosso for 2008 and 2009 on hospital admissions of children aged 0 to 4 years due to pneumonia and on fires in the same period. Admission rates were calculated and choropleth maps were plotted for rates and for fire outbreaks, Moran's I was calculated and the kernel estimator used to identify "hotspots." Data were analyzed using TerraView 3.3.1. Results: Fifteen thousand six hundred eighty-nine children were hospitalized (range zero to 2,315), and there were 161,785 fires (range 7 to 6,454). The average rate of admissions per 1,000 inhabitants was 2.89 (standard deviation [SD] = 5.18) and the number of fires per 1,000 inhabitants was 152.81 (SD = 199.91). Moran's I for the overall number of admissions was I = 0.02 (p = 0.26), the index for rate of admission was I = 0.02 (p = 0.21) and the index for the number of fires was I = 0.31 (p < 0.01). It proved possible to identify four municipalities with elevated rates of admissions for pneumonia. It was also possible to identify two regions with high admission densities. A clustering of fires was evident along what is known as the "arc of deforestation." Conclusions: This study identified municipalities in the state of Mato Grosso that require interventions to reduce rates of admission due to pneumonia and the number fires.
Resumo:
Analytic methods were applied and validated to measure residues of chlorfenvinphos, fipronil, and cypermethrin in meat and bovine fat, using the QuEChERS method and gas chromatography-mass spectrometry. For the meat, 2 g of sample, 4mL of acetonitrile, 1.6 g of MgSO4, and 0.4 g of NaCl were used in the liquid-liquid partition, while 80 mg of C18, 80 mg of primary and secondary amine and 150 mg of MgSO4 were employed in the dispersive solid-phase extraction. For the fat, 1 g of sample, 5 mL of hexane, 10 mL of water, 10 mL of acetonitrile, 4 g of MgSO4, and 0.5 g of NaCl were used in the liquid-liquid partition and 50 mg of primary and secondary amine and 150 mg of MgSO4 were used in the dispersive solid-phase extraction. The recovery percentages obtained for the pesticides in meat at different concentrations ranged from 81 to 129% with relative standard deviation below 27%. The corresponding results from the fat ranged from 70 to 123% with relative standard deviation below 25%. The methods showed sensitivity, precision, and accuracy according to EPA standards and quantification limits below the maximum residue limit established by European Union, except for chlorfenvinphos in the fat.
Resumo:
[EN] These experiments test whether respiration can be predicted better from biomass or from potential respiration, a measurement of the mitochondrial and microsomal respiratory electron transport systems. For nearly a century Kleiber's law or a similar precursor have argued the importance of biomass in predicting respiration. In the last decade, a version of the Metabolic Theory of Ecology has elaborated on Kleiber's Law adding emphasis to the importance of biomass in predicting respiration. We argue that Kleiber's law works because biomass packages mitochondria and microsomal electron transport complexes. On a scale of five orders of magnitude we have shown previously that potential respiration predicts respiration aswell as biomass inmarine zooplankton. Here, using cultures of the branchiopod, Artemia salina and on a scale of less than 2 orders of magnitude,we investigated the power of biomass and potential respiration in predicting respiration.We measured biomass, respiration and potential respiration in Artemia grown in different ways and found that potential respiration (Ф) could predict respiration (R), both in μlO2h−1 (R=0.924Φ+0.062, r2=0.976), but biomass (as mg dry mass) could not (R=27.02DM+8.857, r2=0.128). Furthermore the R/Ф ratio appeared independent of age and differences in the food source.
Resumo:
Methane and nitrous oxide are important greenhouse gases which show a strong increase in atmospheric mixing ratios since pre-industrial time as well as large variations during past climate changes. The understanding of their biogeochemical cycles can be improved using stable isotope analysis. However, high-precision isotope measurements on air trapped in ice cores are challenging because of the high susceptibility to contamination and fractionation. Here, we present a dry extraction system for combined CH4 and N2O stable isotope analysis from ice core air, using an ice grating device. The system allows simultaneous analysis of δD(CH4) or δ13C(CH4), together with δ15N(N2O), δ18O(N2O) and δ15N(NO+ fragment) on a single ice core sample, using two isotope mass spectrometry systems. The optimum quantity of ice for analysis is about 600 g with typical "Holocene" mixing ratios for CH4 and N2O. In this case, the reproducibility (1σ ) is 2.1‰ for δD(CH4), 0.18‰ for δ13C(CH4), 0.51‰ for δ15N(N2O), 0.69‰ for δ18O(N2O) and 1.12‰ for δ15N(NO+ fragment). For smaller amounts of ice the standard deviation increases, particularly for N2O isotopologues. For both gases, small-scale intercalibrations using air and/or ice samples have been carried out in collaboration with other institutes that are currently involved in isotope measurements of ice core air. Significant differences are shown between the calibration scales, but those offsets are consistent and can therefore be corrected for.
Resumo:
ntense liver regeneration and almost 100% survival follows partial hepatectomy of up to 70% of liver mass in rodents. More extensive resections of 70 to 80% have an increased mortality and partial hepatectomies of >80% constantly lead to acute hepatic failure and death in mice. The aim of the study was to determine the effect of systemically administered granulocyte colony stimulating factor (G-CSF) on animal survival and liver regeneration in a small for size liver remnant mouse model after 83% partial hepatectomy (liver weight <0.8% of mouse body weight). Methods: Male Balb C mice (n=80, 20-24g) were preconditioned daily for five days with 5μg G-CSF subcutaneously or sham injected (aqua ad inj). Subsequently 83% hepatic resection was performed and daily sham or G-CSF injection continued. Survival was determined in both groups (G-CSF n=35; Sham: n=33). In a second series BrdU was injected (50mg/kg Body weight) two hours prior to tissue harvest and animals euthanized 36 and 48 hours after 83% liver resection (n=3 each group). To measure hepatic regeneration the BrdU labeling index and Ki67 expression were determined by immunohistochemistry by two independent observers. Harvested liver tissue was dried to constant weight at 65 deg C for 48 hours. Results: Survival was 0% in the sham group on day 3 postoperatively and significantly better (26.2% on day 7 and thereafter) in the G-CSF group (Log rank test: p<0.0001). Dry liver weight was increased in the G-CSF group (T-test: p<0.05) 36 hours after 83% partial hepatectomy. Ki67 expression was elevated in the G-CSF group at 36 hours (2.8±2.6% (Standard deviation) vs 0.03±0.2%; Rank sum test: p<0.0001) and at 48 hours (45.1±34.6% vs 0.7±1.0%; Rank sum test: p<0.0001) after 83% liver resection. BrdU labeling at 48 hours was 0.1±0.3% in the sham and 35.2±34.2% in the G-CSF group (Rank sum test: p<0.0001) Conclusions: The surgical 83% resection mouse model is suitable to test hepatic supportive regimens in the setting of small for size liver remnants. Administration of G-CSF supports hepatic regeneration after microsurgical 83% partial hepatectomy and leads to improved long-term survival in the mouse. G-CSF might prove to be a clinically valuable supportive substance in small for size liver remnants in humans after major hepatic resections due to primary or secondary liver tumors or in the setting of living related liver donation.