929 resultados para Biased correlated random walk
Resumo:
We study phenomenological scaling theories of the polymer dynamics in random media, employing the existing scaling theories of polymer chains and the percolation statistics. We investigate both the Rouse and the Zimm model for Brownian dynamics and estimate the diffusion constant of the center-of-mass of the chain in such disordered media. For internal dynamics of the chain, we estimate the dynamic exponents. We propose similar scaling theory for the reptation dynamics of the chain in the framework of Flory theory for the disordered medium. The modifications in the case of correlated disorders are also discussed. .
Resumo:
Optimal design for parameter estimation in Gaussian process regression models with input-dependent noise is examined. The motivation stems from the area of computer experiments, where computationally demanding simulators are approximated using Gaussian process emulators to act as statistical surrogates. In the case of stochastic simulators, which produce a random output for a given set of model inputs, repeated evaluations are useful, supporting the use of replicate observations in the experimental design. The findings are also applicable to the wider context of experimental design for Gaussian process regression and kriging. Designs are proposed with the aim of minimising the variance of the Gaussian process parameter estimates. A heteroscedastic Gaussian process model is presented which allows for an experimental design technique based on an extension of Fisher information to heteroscedastic models. It is empirically shown that the error of the approximation of the parameter variance by the inverse of the Fisher information is reduced as the number of replicated points is increased. Through a series of simulation experiments on both synthetic data and a systems biology stochastic simulator, optimal designs with replicate observations are shown to outperform space-filling designs both with and without replicate observations. Guidance is provided on best practice for optimal experimental design for stochastic response models. © 2013 Elsevier Inc. All rights reserved.
Resumo:
2000 Mathematics Subject Classification: 62J12, 62K15, 91B42, 62H99.
Resumo:
2010 Mathematics Subject Classification: 62J99.
Resumo:
The aim of this thesis is to identify the relationship between subjective well-being and economic insecurity for public and private sector workers in Ireland using the European Social Survey 2010-2012. Life satisfaction and job satisfaction are the indicators used to measure subjective well-being. Economic insecurity is approximated by regional unemployment rates and self-perceived job insecurity. Potential sample selection bias and endogeneity bias are accounted for. It is traditionally believed that public sector workers are relatively more protected against insecurity due to very institution of public sector employment. The institution of public sector employment is made up of stricter dismissal practices (Luechinger et al., 2010a) and less volatile employment (Freeman, 1987) where workers are subsequently less likely to be affected by business cycle downturns (Clark and Postal-Vinay, 2009). It is found in the literature that economic insecurity depresses the well-being of public sector workers to a lesser degree than private sector workers (Luechinger et al., 2010a; Artz and Kaya, 2014). These studies provide the rationale for this thesis in testing for similar relationships in an Irish context. Sample selection bias arises when a selection into a particular category is not random (Heckman, 1979). An example of this is non-random selection into public sector employment based on personal characteristics (Heckman, 1979; Luechinger et al., 2010b). If selection into public sector employment is not corrected for this can lead to biased and inconsistent estimators (Gujarati, 2009). Selection bias of public sector employment is corrected for by using a standard Two-Step Heckman Probit OLS estimation method. Following Luechinger et al. (2010b), the propensity for individuals to select into public sector employment is estimated by a binomial probit model with the inclusion of the additional regressor Irish citizenship. Job satisfaction is then estimated by Ordinary Least Squares (OLS) with the inclusion of a sample correction term similar as is done in Clark (1997). Endogeneity is where an independent variable included in the model is determined within in the context of the model (Chenhall and Moers, 2007). The econometric definition states that an endogenous independent variable is one that is correlated with the error term (Wooldridge, 2010). Endogeneity is expected to be present due to a simultaneous relationship between job insecurity and job satisfaction whereby both variables are jointly determined (Theodossiou and Vasileiou, 2007). Simultaneity, as an instigator of endogeneity, is corrected for using Instrumental Variables (IV) techniques. Limited Information Methods and Full Information Methods of estimation of simultaneous equations models are assed and compared. The general results show that job insecurity depresses the subjective well-being of all workers in both the public and private sectors in Ireland. The magnitude of this effect differs among sectoral workers. The subjective well-being of private sector workers is more adversely affected by job insecurity than the subjective well-being of public sector workers. This is observed in basic ordered probit estimations of both a life satisfaction equation and a job satisfaction equation. The marginal effects from the ordered probit estimation of a basic job satisfaction equation show that as job insecurity increases the probability of reporting a 9 on a 10-point job satisfaction scale significantly decreases by 3.4% for the whole sample of workers, 2.8% for public sector workers and 4.0% for private sector workers. Artz and Kaya (2014) explain that as a result of many austerity policies implemented to reduce government expenditure during the economic recession, workers in the public sector may for the first time face worsening perceptions of job security which can have significant implications for their well-being (Artz and Kaya, 2014). This can be observed in the marginal effects where job insecurity negatively impacts the well-being of public sector workers in Ireland. However, in accordance with Luechinger et al. (2010a) the results show that private sector workers are more adversely impacted by economic insecurity than public sector workers. This suggests that in a time of high economic volatility, the institution of public sector employment held and was able to protect workers against some of the well-being consequences of rising insecurity. In estimating the relationship between subjective well-being and economic insecurity advanced econometric issues arise. The results show that when selection bias is corrected for, any statistically significant relationship between job insecurity and job satisfaction disappears for public sector workers. Additionally, in order to correct for endogeneity bias the simultaneous equations model for job satisfaction and job insecurity is estimated by Limited Information and Full Information Methods. The results from two different estimators classified as Limited Information Methods support the general findings of this research. Moreover, the magnitude of the endogeneity-corrected estimates are twice as large as those not corrected for endogeneity bias which is similarly found in Geishecker (2010, 2012). As part of the analysis into the effect of economic insecurity on subjective well-being, the effects of other socioeconomic variables and work-related variables are examined for public and private sector workers in Ireland.
Error, Bias, and Long-Branch Attraction in Data for Two Chloroplast Photosystem Genes in Seed Plants
Resumo:
Sequences of two chloroplast photosystem genes, psaA and psbB, together comprising about 3,500 bp, were obtained for all five major groups of extant seed plants and several outgroups among other vascular plants. Strongly supported, but significantly conflicting, phylogenetic signals were obtained in parsimony analyses from partitions of the data into first and second codon positions versus third positions. In the former, both genes agreed on a monophyletic gymnosperms, with Gnetales closely related to certain conifers. In the latter, Gnetales are inferred to be the sister group of all other seed plants, with gymnosperms paraphyletic. None of the data supported the modern ‘‘anthophyte hypothesis,’’ which places Gnetales as the sister group of flowering plants. A series of simulation studies were undertaken to examine the error rate for parsimony inference. Three kinds of errors were examined: random error, systematic bias (both properties of finite data sets), and statistical inconsistency owing to long-branch attraction (an asymptotic property). Parsimony reconstructions were extremely biased for third-position data for psbB. Regardless of the true underlying tree, a tree in which Gnetales are sister to all other seed plants was likely to be reconstructed for these data. None of the combinations of genes or partitions permits the anthophyte tree to be reconstructed with high probability. Simulations of progressively larger data sets indicate the existence of long-branch attraction (statistical inconsistency) for third-position psbB data if either the anthophyte tree or the gymnosperm tree is correct. This is also true for the anthophyte tree using either psaA third positions or psbB first and second positions. A factor contributing to bias and inconsistency is extremely short branches at the base of the seed plant radiation, coupled with extremely high rates in Gnetales and nonseed plant outgroups. M. J. Sanderson,* M. F. Wojciechowski,*† J.-M. Hu,* T. Sher Khan,* and S. G. Brady
Resumo:
Habitat fragmentation can have an impact on a wide variety of biological processes including abundance, life history strategies, mating system, inbreeding and genetic diversity levels of individual species. Although fragmented populations have received much attention, ecological and genetic responses of species to fragmentation have still not been fully resolved. The current study investigated the ecological factors that may influence the demographic and genetic structure of the giant white-tailed rat (Uromys caudimaculatus) within fragmented tropical rainforests. It is the first study to examine relationships between food resources, vegetation attributes and Uromys demography in a quantitative manner. Giant white-tailed rat densities were strongly correlated with specific suites of food resources rather than forest structure or other factors linked to fragmentation (i.e. fragment size). Several demographic parameters including the density of resident adults and juvenile recruitment showed similar patterns. Although data were limited, high quality food resources appear to initiate breeding in female Uromys. Where data were sufficient, influx of juveniles was significantly related to the density of high quality food resources that had fallen in the previous three months. Thus, availability of high quality food resources appear to be more important than either vegetation structure or fragment size in influencing giant white-tailed rat demography. These results support the suggestion that a species’ response to fragmentation can be related to their specific habitat requirements and can vary in response to local ecological conditions. In contrast to demographic data, genetic data revealed a significant negative effect of habitat fragmentation on genetic diversity and effective population size in U. caudimaculatus. All three fragments showed lower levels of allelic richness, number of private alleles and expected heterozygosity compared with the unfragmented continuous rainforest site. Populations at all sites were significantly differentiated, suggesting restricted among population gene flow. The combined effects of reduced genetic diversity, lower effective population size and restricted gene flow suggest that long-term viability of small fragmented populations may be at risk, unless effective management is employed in the future. A diverse range of genetic reproductive behaviours and sex-biased dispersal patterns were evident within U. caudimaculatus populations. Genetic paternity analyses revealed that the major mating system in U. caudimaculatus appeared to be polygyny at sites P1, P3 and C1. Evidence of genetic monogamy, however, was also found in the three fragmented sites, and was the dominant mating system in the remaining low density, small fragment (P2). High variability in reproductive skew and reproductive success was also found but was less pronounced when only resident Uromys were considered. Male body condition predicted which males sired offspring, however, neither body condition nor heterozygosity levels were accurate predictors of the number of offspring assigned to individual males or females. Genetic spatial autocorrelation analyses provided evidence for increased philopatry among females at site P1, but increased philopatry among males at site P3. This suggests that male-biased dispersal occurs at site P1 and female-biased dispersal at site P3, implying that in addition to mating systems, Uromys may also be able to adjust their dispersal behaviour to suit local ecological conditions. This study highlights the importance of examining the mechanisms that underlie population-level responses to habitat fragmentation using a combined ecological and genetic approach. The ecological data suggested that habitat quality (i.e. high quality food resources) rather than habitat quantity (i.e. fragment size) was relatively more important in influencing giant white-tailed rat demographics, at least for the populations studied here . Conversely, genetic data showed strong evidence that Uromys populations were affected adversely by habitat fragmentation and that management of isolated populations may be required for long-term viability of populations within isolated rainforest fragments.
Resumo:
Channel measurements and simulations have been carried out to observe the effects of pedestrian movement on multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) channel capacity. An in-house built MIMO-OFDM packet transmission demonstrator equipped with four transmitters and four receivers has been utilized to perform channel measurements at 5.2 GHz. Variations in the channel capacity dynamic range have been analysed for 1 to 10 pedestrians and different antenna arrays (2 × 2, 3 × 3 and 4 × 4). Results show a predicted 5.5 bits/s/Hz and a measured 1.5 bits/s/Hz increment in the capacity dynamic range with the number of pedestrian and the number of antennas in the transmitter and receiver array.