880 resultados para Anti-fungal activity
Resumo:
海带根是一种治疗糖尿病的民间中药,在沿海地区有很长的民间用药历史。食用海带根能够有效降低糖尿病患者的血糖,起到治疗作用。本文目的在于发现海带根中抗糖尿病的天然活性物质并分析它们在糖尿病治疗中的靶点;进一步开发一种低价且无毒副作用的化学类新药或中药新药。 α-glucosidase和 PTP-1B是II型糖尿病的两个重要靶点,海带根提取物能同时作用于这两个靶点。通过抑制这两种酶,降低血糖水平,85%乙醇粗提物对两种酶的IC50分别为1589ug/ml、IC50 1271ug/ml。乙酸乙酯相和石油醚相分别抑制α-glucosidase和 PTP-1B,IC50分别为380ug/ml和220ug/ml。因此以α-glucosidase和 PTP-1B的抑制活性为导向,用天然产物化学的方法对活性成分进行追踪分离,寻找单体活性物质进而鉴定其结构。由于乙酸乙酯相具有α-glucosidase抑制活性,用硅胶柱层析(石油醚:丙酮5:1、1:1),(二氯甲烷:甲醇60:1、20:1、5:1),凝胶柱层析Sephadex LH20(二氯甲烷:甲醇1:1),HPLC (80% 甲醇-水),对α-glucosidase抑制剂进行分离,得到组分IC50 为3.6ug/ml。用质谱仪和核磁共振确定结构。 生物活性测定结果表明α-glucosidase和 PTP-1B是两种不同的物质,分别位于乙酸乙酯相和石油醚相。光照实验和高温实验表明抑制α-glucosidase的活性成分对光照和温度敏感。光照48h或者50℃ 12h而且对α-glucosidase的抑制活性显著降低,TLC检测并用FeCl3显色初步表明抑制α-glucosidase的活性成分可能是多数酚类物质。动物实验显示在1450ug/kg剂量下,乙酸乙酯相能够显著降低糖尿病小鼠血糖,与阴性对照组差异极显著(P<0.01)。表明,海带根提取物在体内和体外均呈现出抗糖尿病活性,是一种潜在的抗糖尿病药物。
Resumo:
壳聚糖具有多种生物活性且无毒、无污染,可生物降解,但分子量大,水溶性差,其应用受到很大限制。壳寡糖具有良好的水溶性,其制备方法和应用近年来成为研究的热点。本论文详细研究了酶法和化学法制备壳寡糖的工艺条件,并对酶降解和化学氧化降解的产物进行了比较,结果表明氧化降解的壳寡糖氨基含量有所下降,而酶法降解的产物氨基含量基本没有变化。研究发现在木瓜蛋白酶中加入Vc可以一定程度上降低降解产物的粘度。对几种酶联合降解效果进行了研究,结果表明三种酶的联合降解可得到分子量为1800左右的壳寡糖产物,同时可获得较高产率。 本论文还制备了三种新型壳寡糖衍生物,并研究了壳寡糖和三种衍生物的抗肿瘤活性。通过在壳寡糖上引入胍基乙酸,首次合成了壳寡糖胍基乙酰衍生物(N-2-胍基乙酰-壳寡糖);引入烟酰氯、烟酰异硫氰酸酯合成了(N-2-烟酰-壳寡糖、N-2-烟酰异硫氰酸酯-壳寡糖)。 通过对BEL•7402肝癌细胞进行了抑制肿瘤活性研究表明:烟酰壳寡糖衍生物的抗肿瘤活性较其他两种衍生物和壳寡糖的活性要好(1mg/ml浓度下抑制率为21.54%),在较低浓度下有一定的抑制活性(50ug/ml浓度下抑制率为3.57%)。随着浓度的升高,抑制活性也随之提高。烟酰异硫氰酸酯壳寡糖衍生物和胍基乙酰壳寡糖衍生物在低浓度条件下对肿瘤细胞基本没有抑制活性,在高浓度条件下有一定的抑制活性。
Resumo:
海洋生态环境的特殊性决定了海洋中往往含有结构奇特、新颖的化学物质, 海洋药物具有药理特异性、高活性和多样性,已成为药物研发热点领域,海洋抗肿瘤药物也是其中之一。卡拉霉素(kalamycin)来源于海洋放线菌M097的聚酮类化合物,我们实验室用体外增殖抑制试验发现了卡拉霉素(kalamycin)的抗肿瘤作用。有报道其类似物lactoquinomycin和frenolicin B是肿瘤靶点AKT抑制剂,并由此推断吡喃萘醌骨架在AKT抑制过程中发挥主要作用,我们发现虽然卡拉霉素(kalamycin)含有吡喃萘醌骨架,但是并不抑制AKT及其下游信号系统;继而对卡拉霉素(kalamycin)的体外抗肿瘤作用及其机理进行了系统的分析。 采用磺酰罗丹明B(SRB)法检测卡拉霉素(kalamycin)对10株肿瘤细胞株的体外增殖抑制作用,结果表明,卡拉霉素(kalamycin)能明显抑制各种组织来源的肿瘤细胞生长,具有广泛的细胞增殖抑制作用,除对一株肺癌细胞A549抑制作用不明显外,对9株肿瘤细胞株的IC50平均值为2.5μM,并且对各个细胞株生长抑制曲线形态基本一致。采用流式细胞术证实,卡拉霉素(kalamycin)能剂量依赖地诱导结肠癌细胞HCT-116和肝癌细胞SMMC-7721发生G2/M期周期阻滞,可以诱导黑色素瘤A375细胞发生凋亡。 基于前人的报道,我们用Western blot方法检测卡拉霉素(kalamycin)对AKT信号系统的影响,用量从1μM增加到16μM,AKT、mTOR和磷酸化AKT、mTOR、GSK3β的总量都没有变化;因此我们判断卡拉霉素(kalamycin)不是通过AKT系统发挥作用,而是有另外的机制。细胞凋亡和周期阻滞的很多过程是和P53相关的,我们用卡拉霉素(kalamycin)对P53野生和缺失的HCT-116细胞的增殖抑制和凋亡诱导来分析该抑制作用是否和P53相关,结果显示卡拉霉素(kalamycin)对两种细胞的生长抑制和诱导凋亡作用无明显差异,其作用和P53途径是不相关的。 卡拉霉素(kalamycin)细胞增殖抑制作用的非选择性,表明该化合物是一个广谱的细胞增殖抑制剂。我们用体外酶反应实验分析了卡拉霉素(kalamycin)对拓扑酶的抑制作用,结果显示卡拉霉素(kalamycin)对Topo I没有抑制作用,在20μM时几乎完全抑制Topo II,呈现出显著的浓度依赖效应,抑制作用大约比VP16强十倍。用DNA伸展实验和Topo II 介导的负超螺旋 pBR322 切割实验,证实卡拉霉素(kalamycin)不是DNA嵌入剂和Topo II毒剂,而是一个催化抑制剂。在体外模拟Topo II的催化反应步骤,把整个过程分解,发现卡拉霉素(kalamycin)可以抑制Topo II介导的DNA的切割,但是对再连接没有作用;卡拉霉素(kalamycin)能抑制ATP水解的作用,但是在较高剂量时抑制作用要比阳性对照弱得多。因此,卡拉霉素(kalamycin)可能主要通过抑制Topo II介导的DNA的切割发挥作用。 肿瘤新血管生成是原发性肿瘤赖以发生、生长和转移的物质基础。我们用了多个新生血管生成模型对卡拉霉素(kalamycin)的抗新生血管生成作用进行了检测,发现卡拉霉素(kalamycin) 对内皮细胞管腔形有抑制作用,其作用效果呈现明显的剂量依赖性。卡拉霉素(kalamycin)在对内皮细胞HMEC-1在12小时内的IC50是4.39μM ,在没有显著增殖抑制作用的剂量下,对HMEC-1管腔形成依然具有抑制作用,提示卡拉霉素(kalamycin)的抗新生血管生成作用并非完全来源于其增殖抑制作用。通过体外酶反应、western blot和双荧光素酶报告基因系统分析卡拉霉素(kalamycin)抑制肿瘤新血管生成的信号途径,结果发现这种抑制作用不是依赖于酪氨酸激酶和HIF-lα途径的。 综上所述,卡拉霉素(kalamycin)不是一个AKT抑制剂,它通过专一性的抑制Topo II使肿瘤细胞发生周期阻滞和细胞凋亡,主要抑制Topo II介导的DNA的切割和ATP水解作用。同时卡拉霉素(kalamycin)可以抑制肿瘤血管管腔形成,抑制作用不依赖酪氨酸激酶和HIF-lα途径。
Resumo:
以血管生成为靶点的抗肿瘤策略是抗肿瘤领域的研究热点,目前已经发现许多天然和化学合成的抗血管生成药物。鲨鱼软骨作为抗新生血管生成因子的重要来源的研究已有20多年的历史,很多研究显示鲨鱼软骨提取物有抗血管生成活性。但鲨鱼软骨活性多肽的完整分子结构一直未见报道;鲨鱼软骨活性多肽干扰血管生成通路的信号途径尚不明确。 本文应用盐酸胍抽提、丙酮分级沉淀、超滤、凝胶层析等分离技术,从青鲨(Prionace glauca)软骨中分离纯化并鉴定了一种新的具有抗新生血管生成活性的多肽。经SDS-PAGE和N-末端氨基酸序列分析显示,该多肽分子量为15500 Da,采用蛋白数据库分析表明该多肽是一种新发现的鲨鱼软骨多肽(Polypeptide from Prionace glauca,PG155)。 体外实验显示,PG155抑制内皮细胞生长因子(vascular endothelial growth factor,VEGF)介导的人脐静脉内皮细胞(human umbilical vein endothelial cell ,HUVEC)迁移和管腔形成,并呈剂量依赖关系。200 μg/ml PG155对牛主动脉内皮细胞(Bovine Aortic Endothelial Cells,BAECs)和HUVECs及以下癌细胞,包括人肝癌细胞(human hepatoma Bel-7402 cells,Bel-7402)、 口腔上皮癌细胞(human oral epidermoid carcinoma KB cells ,KB)、人结肠癌细胞(human colon cancer HCT-18 cells,HCT-18)和人乳腺癌细胞(human breast MCF7 cancer cells ,MCF7)的增殖均无抑制作用,说明PG155无细胞毒作用。20 μg/ml PG155显著抑制HUVEC的迁移和管腔形成;40-80 μg/ml PG155 对VEGF 介导的HUVEC的迁移和管腔形成几乎完全抑制。 体内实验显示,PG155显著抑制斑马鱼胚胎模型新生血管生成,并呈剂量依赖关系。形态学观察表明PG155显著抑制斑马鱼胚胎肠下静脉(subintestinal vessels, SIVs)的生长,随着浓度的升高SIVs的生长可受到完全抑制。碱性磷酸酶染色分析显示,在一定浓度范围内,PG155随着浓度的升高对斑马鱼胚胎整体血管生成抑制作用依次增强。160 μg/ml PG155会引起斑马鱼胚胎心脏功能障碍。 由海洋生物中发现新的肿瘤新生血管生成抑制剂国内外的报道较少,我们的工作表明鲨鱼软骨可作为血管生成抑制剂的重要来源,鲨鱼软骨活性多肽PG155由于具有极低的细胞毒作用,并能抑制VEGF介导的血管生成过程,有希望成为一类新型抗肿瘤药物。
Resumo:
W niniejszej publikacji skupiono się na przedstawieniu źródeł i najważniejszych przejawów radykalizmu islamskiego w Europie. Zwrócono w szczególności uwagę na historyczne i ideologiczne determinanty rozwoju tego zjawiska. Wskazano najważniejsze etapy ewolucji zagrożenia dżihadystycznego oraz aktorów mających wpływ na jego ewolucję. Uwzględniając powyższe przesłanki w artykule zawarto ponadto najważniejsze wnioski dotyczące wzrastającego poziomu powyższego zagrożenia dla wybranych państw europejskich, w okresie ostatnich kilkunastu lat wraz ze wskazaniem zmiennych wpływających na ów poziom w postaci: procesu radykalizacji społeczności muzułmańskich w Europie, zmian w taktyce i organizacji grup dżihadystycznych, sukcesu akcji rekrutacyjnych i antyterrorystycznej aktywności państw Zachodu.
Resumo:
Functional food ingredients, with scientifically proven and validated bioactive effects, present an effective means of inferring physiological health benefits to consumers to reduce the risk of certain diseases. The search for novel bioactive compounds for incorporation into functional foods is particularly active, with brewers’ spent grain (BSG, a brewing industry co-product) representing a unique source of potentially bioactive compounds. The DNA protective, antioxidant and immunomodulatory effects of phenolic extracts from both pale (P1 - P4) and black (B1 – B4) BSG were examined. Black BSG extracts significantly (P < 0.05) protected against DNA damage induced by hydrogen peroxide (H2O2) and extracts with the highest total phenolic content (TPC) protected against 3-morpholinosydnonimine hydrochloride (SIN-1)-induced oxidative DNA damage, measured by the comet assay. Cellular antioxidant activity assays were used to measured antioxidant potential in the U937 cell line. Extracts P1 – P3 and B2 - B4 demonstrated significant (P < 0.05) antioxidant activity, measured by the superoxide dismutase (SOD) activity, catalase (CAT) activity and gluatathione (GSH) content assays. Phenolic extracts P2 and P3 from pale BSG possess anti-inflammatory activity measured in concanavalin-A (conA) stimulated Jurkat T cells by an enzyme-linked immunosorbent assay (ELISA); significantly (P < 0.05) reducing production of interleukin-2 (IL-2), interleukin-4 (IL-4, P2 only), interleukin-10 (IL-10) and interferon-γ (IFN-γ). Black BSG phenolic extracts did not exhibit anti-inflammatory effects in vitro. Hydroxycinnamic acids (HA) have previously been shown to be the phenolic acids present at highest concentration in BSG; therefore the HA profile of the phenolic extracts used in this research, the original barley (before brewing) and whole BSG was characterised and quantified using high performance liquid chromatography (HPLC). The concentration of HA present in the samples was in the order of ferulic acid (FA) > p-coumaric acid (p-CA) derivatives > FA derivatives > p-CA > caffeic acid (CA) > CA derivatives. Results suggested that brewing and roasting decreased the HA content. Protein hydrolysates from BSG were also screened for their antioxidant and anti-inflammatory potential. A total of 34 BSG protein samples were tested. Initial analyses of samples A – J found the protein samples did not exert DNA protective effects (except hydrolysate H) or antioxidant effects by the comet and SOD assays, respectively. Samples D, E, F and J selectively reduced IFN-γ production (P < 0.05) in Jurkat T cells, measured using enzyme linked immunosorbent assay (ELISA). Further testing of hydrolysates K – W, including fractionated hydrolysates with molecular weight < 3, < 5 and > 5 kDa, found that higher molecular weight (> 5 kDa) and unfractionated hydrolysates demonstrate greatest anti-inflammatory effects, while fractionated hydrolysates were also shown to have antioxidant activity, by the SOD activity assay. A commercially available yogurt drink (Actimel) and snack-bar and chocolate-drink formulations were fortified with the most bioactive phenolic and protein samples – P2, B2, W, W < 3 kDa, W < 5 kDa, W > 5 kDa. All fortified foods were subjected to a simulated gastrointestinal in vitro digestion procedure and bioactivity retention in the digestates was determined using the comet and ELISA assays. Yogurt fortified with B2 digestate significantly (P < 0.05) protected against H2O2-induced DNA damage in Caco-2 cells. Greatest immunomodulatory activity was demonstrated by the snack-bar formulation, significantly (P < 0.05) reducing IFN-γ production in con-A stimulated Jurkat T cells. Hydrolysate W significantly (P < 0.05) increased the IFN-γ reducing capacity of the snack-bar. Addition of fractionated hydrolysate W < 3 kDa and W < 5 kDa to yogurt also reduced IL-2 production to a greater extent than the unfortified yogurt (P < 0.05).
Resumo:
Bacterial lipopolysaccharide (endotoxin) is a frequent contaminant of biological specimens and is also known to be a potent inducer of beta-chemokines and other soluble factors that inhibit HIV-1 infection in vitro. Though lipopolysaccharide (LPS) has been shown to stimulate the production of soluble HIV-1 inhibitors in cultures of monocyte-derived macrophages, the ability of LPS to induce similar inhibitors in other cell types is poorly characterized. Here we show that LPS exhibits potent anti-HIV activity in phytohemagglutinin-stimulated peripheral blood mononuclear cells (PBMCs) but has no detectable anti-HIV-1 activity in TZM-bl cells. The anti-HIV-1 activity of LPS in PBMCs was strongly associated with the production of beta-chemokines from CD14-positive monocytes. Culture supernatants from LPS-stimulated PBMCs exhibited potent anti-HIV-1 activity when added to TZM-bl cells but, in this case, the antiviral activity appeared to be related to IFN-gamma rather than to beta-chemokines. These observations indicate that LPS stimulates PBMCs to produce a complex array of soluble HIV-1 inhibitors, including beta-chemokines and IFN-gamma, that differentially inhibit HIV-1 depending on the target cell type. The results also highlight the need to use endotoxin-free specimens to avoid artifacts when assessing HIV-1-specific neutralizing antibodies in PBMC-based assays.
Resumo:
Infiltration of myeloid cells in the tumor microenvironment is often associated with enhanced angiogenesis and tumor progression, resulting in poor prognosis in many types of cancer. The polypeptide chemokine PK2 (Bv8, PROK2) has been shown to regulate myeloid cell mobilization from the bone marrow, leading to activation of the angiogenic process, as well as accumulation of macrophages and neutrophils in the tumor site. Neutralizing antibodies against PK2 were shown to display potent anti-tumor efficacy, illustrating the potential of PK2-antagonists as therapeutic agents for the treatment of cancer. In this study we demonstrate the anti-tumor activity of a small molecule PK2 antagonist, PKRA7, in the context of glioblastoma and pancreatic cancer xenograft tumor models. For the highly vascularized glioblastoma, PKRA7 was associated with decreased blood vessel density and increased necrotic areas in the tumor mass. Consistent with the anti-angiogenic activity of PKRA7 in vivo, this compound effectively reduced PK2-induced microvascular endothelial cell branching in vitro. For the poorly vascularized pancreatic cancer, the primary anti-tumor effect of PKRA7 appears to be mediated by the blockage of myeloid cell migration/infiltration. At the molecular level, PKRA7 inhibits PK2-induced expression of certain pro-migratory chemokines and chemokine receptors in macrophages. Combining PKRA7 treatment with standard chemotherapeutic agents resulted in enhanced effects in xenograft models for both types of tumor. Taken together, our results indicate that the anti-tumor activity of PKRA7 can be mediated by two distinct mechanisms that are relevant to the pathological features of the specific type of cancer. This small molecule PK2 antagonist holds the promise to be further developed as an effective agent for combinational cancer therapy.
Resumo:
Background A recombinant form of the alpha 2(IV)NC1 domain of type IV collagen has been shown to have potent anti-angiogenic activity although this peptide has not been studied in the context of proliferative retinopathies. In the current investigation we examined the potential for alpha 2(IV) NC1 to regulate retinal microvascular endothelial cell function using a range of in vitro and in vivo assay systems.
Resumo:
Background: The purpose of this study was to assess the efficacy and safety of ISIS 3521, an antisense phosphorothioate oligonucleotide to protein kinase C in patients with relapsed low-grade non-Hodgkin's lymphoma (NHL). Patients and methods: Twenty-six patients received ISIS 3521 (2 mg/kg/day) as a continuous infusion over 21 days of each 28-day cycle. Results: The median age of the patients was 53 years (range 37–77). Histological subtypes were low-grade follicular lymphoma (n=22) and B-cell small lymphocytic lymphoma (n=4). Twenty-one (81%) had stage III/IV disease. The median number of previous lines of chemotherapy was two (range one to six). A total of 87 cycles of ISIS 3521 were administered. Twenty-three patients were assessable for response. Three patients achieved a partial response. No complete responses were observed. Ten patients had stable disease. Grade 3–4 toxicity was as follows: neutropenia (3.8%) and thrombocytopenia (26.9%). Conclusions: ISIS 3521 has demonstrated anti-tumour activity in patients with relapsed low-grade NHL. There may be a potential role for this agent in combination with conventional chemotherapy for advanced low-grade lymphoma, and further trials are warranted.
Resumo:
Introduction
Unfractionated Heparin (UFH) is used widely in paediatrics. Paediatric specific recommendations for UFH therapy are few, with the majority of recommendations being extrapolated from adult practice. In vitro studies have shown that this practice may be suboptimal. This study aimed to improve the understanding of the impact of age upon UFH response in vivo.
Materials and Methods
This prospective, observational study, conducted in the Paediatric Intensive Care Unit (PICU), included: patients 16 years or younger; treated with UFH of at least 10 U/Kg/hr. Laboratory analysis included: Antithrombin, APTT, Anti-Xa, Anti-IIa and thrombin generation expressed as the Endogenous Thrombin Potential. Results were grouped according to patient age (i.e. < 1, 1-5, 6-10 and 11-16 years).
Results
85 patients received an equivalent mean UFH dose with a median duration of 3 days. Antithrombin levels were decreased compared to age-related norms in children up to 11 years of age. APTT results were comparable across the age-groups. The Anti-Xa results using two different assays showed a trend for lower values in younger children. All children less than one year old recorded Anti-Xa values outside the therapeutic range for heparin therapy, for both assays. There was a trend for decreased Anti-IIa activity in younger children. Endogenous Thrombin Potential showed a significant trend for increased inhibition in older children. In vitro Antithrombin supplementation did not change the Anti-Xa or thrombin generation.
Conclusions
This study confirms that, in vivo, for the same dose of UFH, the anti Xa and anti IIa effect, as well as the inhibition of endogenous thrombin potential is age dependent and that these differences are not purely AT dependent. The implication is that the anticoagulant and antithrombotic effect of a given dose of UFH differs with age. Clinical outcome studies to determine the optimal dosing for each age group are warranted.
Abbreviations
UFH, Unfractionated Heparin; ETP, Endogenous Thrombin Potential; AT, Antithrombin; APTT, Activated Partial Thromboplastin Time
Resumo:
Objectives Pre-emptive fluconazole (fcz) anti-fungal therapy is often based upon Candida colonisation of at least 2 non-contiguous non-sterile sites. The aim of this study was to evaluate the relationship between candidaemia and prior colonisation of non-sterile sites. Methods A retrospective observational study was performed in the intensive care unit/high dependency unit (ICU/HDU) of a University hospital on alternate years from 1999–2007, where a pre-emptive anti-fungal therapy policy was introduced in 2005. Results A higher proportion of blood isolates were Candida glabrata compared with non-sterile isolates (16/46 vs 106/1062; p
Resumo:
BACKGROUND: On the basis of preclinical studies of NC-6004, a cisplatin-incorporated micellar formulation, we hypothesised that NC-6004 could show lower toxicity than cisplatin and show greater anti-tumour activity in phase I study. METHODS: A total of 17 patients were recruited in a range of advanced solid tumour types. NC-6004 was administered intravenously (i.v.) every 3 weeks. The dose escalation started at 10?mg?m(-2) and was increased up to 120?mg?m(-2) according to the accelerated titration method and modified Fibonacci method. RESULTS: One dose-limiting toxicity (DLT) occurred in a patient who was given 90?mg?m(-2) of NC-6004, otherwise any significant cisplatin-related toxicity was not observed or generally mild toxicity was observed. Despite the implementation of post-hydration and pre-medication regimen, renal impairment and hypersensitivity reactions still developed at 120?mg?m(-2), which led to the conclusion that the maximum tolerated dose was 120?mg?m(-2), and the recommended dose was 90?mg?m(-2), although DLT was not defined as per protocol. Stable disease was observed in seven patients. The maximum concentration and area under the concentration-time curve of ultrafilterable platinum at 120?mg?m(-2) NC-6004 were 34-fold smaller and 8.5-fold larger, respectively, than those for cisplatin. CONCLUSION: The delayed and sustained release of cisplatin after i.v. administration contributes to the low toxicity of NC-6004.
Resumo:
GYY4137 (morpholin-4-ium-4-methoxyphenyl(morpholino) phosphinodithioate) is a slow-releasing hydrogen sulfide (H2S) donor. Administration of GYY4137 (50 mg/kg, iv) to anesthetized rats 10 min after lipopolysaccharide (LPS; 4 mg/kg, iv) decreased the slowly developing hypotension. GYY4137 inhibited LPS-induced TNF-alpha production in rat blood and reduced the LPS-evoked rise in NF-kappa B;B activation, inducible nitric oxide synthase/cyclooxygenase-2 expression, and generation of PGE(2) and nitrate/nitrite in RAW 264.7 macrophages. GYY4137 (50 mg/kg, ip) administered to conscious rats 1 or 2 h after (but not 1 h before) LPS decreased the subsequent (4 h) rise in plasma proinflammatory cytokines (TNF-alpha, IL-1 beta, IL-6), nitrite/nitrate, C-reactive protein, and L-selectin. GYY4137 administration also decreased the LPS-evoked increase in lung myeloperoxidase activity, increased plasma concentration of the anti-inflammatory cytokine IL-10, and decreased tissue damage as determined histologically and by measurement of plasma creatinine and alanine aminotransferase activity. Tune-expired GYY4137 (50 mg/kg, ip) did not affect the LPS-induced rise in plasma TNF-alpha or lung myeloperoxidase activity. GYY4137 also decreased the LPS-mediated upregulation of liver transcription factors (NF-kappa B and STAT-3). These results suggest ail anti-inflammatory effect of GYY4137. The possibility that GYY4137 and other slow-releasing H2S donors exert anti-inflammatory activity in other models of inflammation and in humans warrants further study. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
To understand the molecular etiology of osteosarcoma, we isolated and characterized a human osteosarcoma cell line (OS1). OS1 cells have high osteogenic potential in differentiation induction media. Molecular analysis reveals OS1 cells express the pocket protein pRB and the runt-related transcription factor Runx2. Strikingly, Runx2 is expressed at higher levels in OS1 cells than in human fetal osteoblasts. Both pRB and Runx2 have growth suppressive potential in osteoblasts and are key factors controlling competency for osteoblast differentiation. The high levels of Runx2 clearly suggest osteosarcomas may form from committed osteoblasts that have bypassed growth restrictions normally imposed by Runx2. Interestingly, OS1 cells do not exhibit p53 expression and thus lack a functional p53/p21 DNA damage response pathway as has been observed for other osteosarcoma cell types. Absence of this pathway predicts genomic instability and/or vulnerability to secondary mutations that may counteract the anti-proliferative activity of Runx2 that is normally observed in osteoblasts. We conclude OS1 cells provide a valuable cell culture model to examine molecular events that are responsible for the pathologic conversion of phenotypically normal osteoblast precursors into osteosarcoma cells.