948 resultados para Algebraic decoding
Resumo:
For any vacuum initial data set, we define a local, non-negative scalar quantity which vanishes at every point of the data hypersurface if and only if the data are Kerr initial data. Our scalar quantity only depends on the quantities used to construct the vacuum initial data set which are the Riemannian metric defined on the initial data hypersurface and a symmetric tensor which plays the role of the second fundamental form of the embedded initial data hypersurface. The dependency is algorithmic in the sense that given the initial data one can compute the scalar quantity by algebraic and differential manipulations, being thus suitable for an implementation in a numerical code. The scalar could also be useful in studies of the non-linear stability of the Kerr solution because it serves to measure the deviation of a vacuum initial data set from the Kerr initial data in a local and algorithmic way.
Resumo:
PhD thesis in Biomedical Engineering
Resumo:
Inspired by the relational algebra of data processing, this paper addresses the foundations of data analytical processing from a linear algebra perspective. The paper investigates, in particular, how aggregation operations such as cross tabulations and data cubes essential to quantitative analysis of data can be expressed solely in terms of matrix multiplication, transposition and the Khatri–Rao variant of the Kronecker product. The approach offers a basis for deriving an algebraic theory of data consolidation, handling the quantitative as well as qualitative sides of data science in a natural, elegant and typed way. It also shows potential for parallel analytical processing, as the parallelization theory of such matrix operations is well acknowledged.
Resumo:
"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"
Resumo:
"Series: Solid mechanics and its applications, vol. 226"
Resumo:
Dissertação de mestrado em Matemática
Resumo:
Teses de Doutoramento em Arquitectura.
Resumo:
In this paper the construction of Reed-Solomon RS(255,239) codeword is described and the process of coding and decoding a message is simulated and verified. RS(255,239), or its shortened version RS(224,208) is used as a coding technique in Low-Power Single Carrier (LPSC) physical layer, as described in IEEE 802.11ad standard. The encoder takes 239 8-bit information symbols, adds 16 parity symbols and constructs 255-byte codeword to be transmitted through wireless communication channel. RS(255,239) codeword is defined over Galois Field GF and is used for correcting upto 8 symbol errors. RS(255,239) code construction is fully implemented and Simulink test project is constructed for testing and analyzing purposes.
Resumo:
An algebraic decay rate is derived which bounds the time required for velocities to equilibrate in a spatially homogeneous flow-through model representing the continuum limit of a gas of particles interacting through slightly inelastic collisions. This rate is obtained by reformulating the dynamical problem as the gradient flow of a convex energy on an infinite-dimensional manifold. An abstract theory is developed for gradient flows in length spaces, which shows how degenerate convexity (or even non-convexity) | if uniformly controlled | will quantify contractivity (limit expansivity) of the flow.
Resumo:
Planar polynomial vector fields which admit invariant algebraic curves, Darboux integrating factors or Darboux first integrals are of special interest. In the present paper we solve the inverse problem for invariant algebraic curves with a given multiplicity and for integrating factors, under generic assumptions regarding the (multiple) invariant algebraic curves involved. In particular we prove, in this generic scenario, that the existence of a Darboux integrating factor implies Darboux integrability. Furthermore we construct examples where the genericity assumption does not hold and indicate that the situation is different for these.
Resumo:
We present in this article several possibilities to approach the height of an algebraic curve defined over a number field : as an intersection number via the Arakelov theory, as a limit point of the heights of its algebraic points and, finally, using the minimal degree of Belyi functions.
Resumo:
We prove a double commutant theorem for hereditary subalgebras of a large class of C*-algebras, partially resolving a problem posed by Pedersen[8]. Double commutant theorems originated with von Neumann, whose seminal result evolved into an entire field now called von Neumann algebra theory. Voiculescu proved a C*-algebraic double commutant theorem for separable subalgebras of the Calkin algebra. We prove a similar result for hereditary subalgebras which holds for arbitrary corona C*-algebras. (It is not clear how generally Voiculescu's double commutant theorem holds.)
Resumo:
La "Phoronomia", primer libro de mecánica escrito tras los "Principia", es representativo del proceso de transición que transformó la dinámica a principios del XVIII y que concluye con la "Mecánica" de Euler (1736). Está escrita en estilo geométrico y algebraico, y mezcla los conceptos y métodos de Leibniz y Newton de forma idiosincrásica. En esta obra se encuentra por primera vez la segunda ley de Newton escrita en la forma en que hoy la conocemos, así como un intento de construcción de la estática y la dinámica de sólidos y fluidos basado en reglas generales diferenciales.
Resumo:
Recently there has been a great deal of work on noncommutative algebraic cryptography. This involves the use of noncommutative algebraic objects as the platforms for encryption systems. Most of this work, such as the Anshel-Anshel-Goldfeld scheme, the Ko-Lee scheme and the Baumslag-Fine-Xu Modular group scheme use nonabelian groups as the basic algebraic object. Some of these encryption methods have been successful and some have been broken. It has been suggested that at this point further pure group theoretic research, with an eye towards cryptographic applications, is necessary.In the present study we attempt to extend the class of noncommutative algebraic objects to be used in cryptography. In particular we explore several different methods to use a formal power series ring R && x1; :::; xn && in noncommuting variables x1; :::; xn as a base to develop cryptosystems. Although R can be any ring we have in mind formal power series rings over the rationals Q. We use in particular a result of Magnus that a finitely generated free group F has a faithful representation in a quotient of the formal power series ring in noncommuting variables.
Resumo:
Discriminating groups were introduced by G.Baumslag, A.Myasnikov and V.Remeslennikov as an outgrowth of their theory of algebraic geometry over groups. However they have taken on a life of their own and have been an object of a considerable amount of study. In this paper we survey the large array results concerning the class of discriminating groups that have been developed over the past decade.