989 resultados para ATOMIC FORCE MISCROSCOPY


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This report focuses on the structural and optical properties of the GaN films grown on p-Si (100) substrates along with photovoltaic characteristics of GaN/p-Si heterojunctions fabricated with substrate nitridation and in absence of substrate nitridation. The high resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM), Raman and photoluminescence (PL) spectroscopic studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN epifilms grown with silicon nitride buffer layer when compared with the sample grown without silicon nitride buffer layer. The low temperature PL shows a free excitonic (FX) emission peak at 3.51 eV at the temperature of 5 K with a very narrow line width of 35 meV. Temperature dependent PL spectra follow the Varshni equation well and peak energy blue shifts by similar to 63 meV from 300 to 5 K. Raman data confirms the strain free nature and reasonably good crystallinity of the films. The GaN/p-Si heterojunctions fabricated without substrate nitridation show a superior photovoltaic performance compared to the devices fabricated in presence of substrate nitridation. The discussions have been carried out on the junction properties. Such single junction devices exhibit a promising fill factor and conversion efficiency of 23.36 and 0.12 %, respectively, under concentrated AM1.5 illumination.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report on the design, development, and performance study of a packaged piezoelectric thin film impact sensor, and its potential application in non-destructive material discrimination. The impact sensing element employed was a thin circular diaphragm of flexible Phynox alloy. Piezoelectric ZnO thin film as an impact sensing layer was deposited on to the Phynox alloy diaphragm by RF reactive magnetron sputtering. Deposited ZnO thin film was characterized by X-ray diffraction (XRD), Atomic Force Microscopy (AFM), and Scanning Electron Microscopy (SEM) techniques. The d(31) piezoelectric coefficient value of ZnO thin film was 4.7 pm V-1, as measured by 4-point bending method. ZnO film deposited diaphragm based sensing element was properly packaged in a suitable housing made of High Density Polyethylene (HDPE) material. Packaged impact sensor was used in an experimental set-up, which was designed and developed in-house for non-destructive material discrimination studies. Materials of different densities (iron, glass, wood, and plastic) were used as test specimens for material discrimination studies. The analysis of output voltage waveforms obtained reveals lots of valuable information about the impacted material. Impact sensor was able to discriminate the test materials on the basis of the difference in their densities. The output response of packaged impact sensor shows high linearity and repeatability. The packaged impact sensor discussed in this paper is highly sensitive, reliable, and cost-effective.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Composites of graphene involving chemically bonded nano films of metal oxides have been prepared by reacting graphene containing surface oxygen functionalities with metal halide vapours followed by exposure to water vapour. The composites have been characterized by electron microscopy, atomic force microscopy and other techniques. Magnetite particles chemically bonded to graphene dispersible in various solvents have been prepared and they exhibit fairly high magnetization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amorphous thin chalcogenide Si15Te85-xGex films (x: 5, 9, 10, 11, 12) are prepared by flash evaporation and the temperature dependence of resistance of these films has been studied in the temperature range 25-250 degrees C. All the compositions show a linear variation of resistance in this temperature range. Apart from the linear variation, a sharp reduction in resistance at one or at two distinct temperatures (T-TR1/T-TR2) is seen. Thin films annealed at these temperatures, when subjected to X-ray diffraction studies suggest that the dominant crystalline phase at T-TR1 and at T-TR2 is the same and the two dips are associated with varying levels of crystallization. This is also reflected in the atomic force microscopic (AFM) study. Further, the resistance of these two phases shows no drift when the films are annealed for varying lengths of time (10 min to 120 min) suggesting the stability of the phases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radical catalyzed thiol-ene reaction has become a useful alternative to the Huisgen-type azide-yne click reaction as it helps expand the variability in reaction conditions as well as the range of clickable entities. In this study, the direct generation of a hyperbranched polyether (HBPE) having decyl units at the periphery and a pendant allyl group on every repeat unit of the polymer backbone is described; the allyl groups serve as a reactive handle for postpolymerization modifications and permits the generation of a variety of internally functionalized HBPEs. In this design, the AB(2) monomer carries two decylbenzyl ether units (B-functionality), an aliphatic OH (A-functionality) and a pendant allyl group within the spacer segment; polymerization of the monomer readily occurs at 150 degrees C via melt transetherification process by continuous removal of 1-decanol under reduced pressure. The resulting HBPE has a hydrophobic periphery due to the presence of numerous decyl chains, while the allyl groups that remain unaffected during the melt polymerization provides an opportunity to install a variety of functional groups within the interior; thiol-ene click reaction with two different thiols, namely 3-mercaptopropionic acid and mercaptosuccinic acid, generated interesting amphiphilic structures. Preliminary field emission scanning electron microscope (FESEM) and Atomic Force Microscopy (AFM) imaging studies reveal the formation of fairly uniform spherical aggregates in water with sizes ranging from 200 to 400 nm; this suggests that these amphiphilic HBPs is able to reconfigure to generate jellyfish-like conformations that subsequently aggregate in an alkaline medium. The internal allyl functional groups were also used to generate intramolecularly core-crosslinked HBPEs, by the use of dithiol crosslinkers; gel permeation chromatography traces provided clear evidence for reduction in the size after crosslinking. In summary, we have developed a simple route to prepare core-clickable HBPEs and have demonstrated the quantitative reaction of the allyl groups present within the interior of the polymers; such HB polymeric systems that carry numerous functional groups within the core could have interesting applications in analyte sequestration and possibly sensing, especially from organic media. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4125-4135

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new family of supramolecular organogelators, based on chiral amino acid derivatives of 2,4,6-trichloro-pyrimidine-5-carbaldehyde, has been synthesized. L-alanine was incorporated as a spacer between the pyrimidine core and long hydrocarbon tails to compare the effect of chirality and hydrogen bonding to that of the achiral analogue. The role of aromatic moiety on the chiral spacer was also investigated by introducing L-phenyl alanine moieties. The presence of intermolecular hydrogen-bonding leading to the chiral self-assembly was probed by concentration-dependent FTIR and UV/Vis spectroscopies, in addition to circular dichroism (CD) studies. Temperature and concentration-dependent CD spectroscopy ascribed to the formation of -sheet-type H-bonded networks. The morphology and the arrangements of the molecules in the freeze-dried gels were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) techniques. Calculation of the length of each molecular system by energy minimization in its extended conformation and comparison with the small-angle XRD pattern reveals that this class of gelator molecules adopts a lamellar organization. Polarized optical microscopy (POM) and differential scanning calorimetry (DSC) indicate that the solid state phase behavior of these molecules is totally dependent on the choice of their amino acid spacers. Structure-induced aggregation properties based on the H-bonding motifs and the packing of the molecule in three dimensions leading to gelation was elucidated by rheological studies. However, viscoelasticity was shown to depend only marginally on the H-bonding interactions; rather it depends on the packing of the gelators to a greater extent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanosheets of MoO3 that consist of only a few layers have been prepared by using four methods, including the oxidation of MoS2 nanosheets, intercalation with LiBr, and ultrasonication. These nanosheets have been characterized by atomic force microscopy and other techniques. Besides showing a blue-shift of the optical absorption band compared to the bulk sample, few-layer MoO3 exhibits enhanced photocatalytic activity. In combination with a borocarbonitride, few-layer MoO3 shows good performance characteristics as a supercapacitor electrode.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) thin films are deposited on unheated p-Si (100) and quartz substrates by employing DC reactive magnetron sputtering technique. The effect of post-deposition annealing in air at temperatures in the range 673-973 K on the structural, electrical, and dielectric properties of the films was investigated. The chemical composition of the TiO2 films was analyzed with X-ray photoelectron spectroscopy. The surface morphology of the films was studied by atomic force microscope. The optical band gap of the as-deposited film was 3.50 eV, and it increased to 3.55 eV with the increase in annealing temperature to 773 K. The films annealed at higher temperature of 973 K showed the optical band gap of 3.43 eV. Thin film capacitors were fabricated with the MOS configuration of Al/TiO2/p-Si. The leakage current density of the as-deposited films was 1.2 x 10(-6) A/cm(2), and it decreased to 5.9 x 10(-9) A/cm(2) with the increase in annealing temperature to 973 K. These films showed high dielectric constant value of 36. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Gd3+ doped Y3-xGdxFe5O12 (x=0.0, 0.05, 0.15, and 0.25) nanopowders were prepared using modified sol-gel route. The structural characterizations such as X-ray diffraction, transmission electron microscopy has been carried out. The nanopowders were sintered at 700 degrees C/3 h. The lattice parameters and density of the samples were increased with an increase of Gd3+ concentration. The microstructure was analyzed using atomic force microscopy. The room temperature dielectric (epsilon' and epsilon `') and magnetic (mu' and mu `') properties were measured in the frequency range 5-50 GHz. with Gd3+ the dielectric properties were enhanced, but there is a decrease in the magnetic properties. The room temperature magnetization studies were carried out up to 1.5 T. the saturation and remnant magnetization were decreased with an increase of gadolinium concentration. These garnets have low permeability, low losses and a broad distribution of FMR line width which makes them a promising material for microwave devices can be used in the high frequency range i.e. up to 50 GHz. (C) 2013 Elsevier BM. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A brief overview of our group research activities is given and the concept of donor acceptor is described for the development of conjugated polymers for optoelectronic devices. In particular, a new family of conjugated polymers based on dithienopyrrole has been synthesized to demonstrate the concept of donor-acceptor. The dithienopyrrole was coupled to benzodithiophene via Stille coupling to obtain two low band gap polymers P5a and P5b having -C18H37 and -2-ethylhexyl alkyl chain respectively. Both the polymers exhibit absorption within the solar spectrum with an optical band gap below 2 eV. Atomic force microscopy revealed that both the polymers form smooth film with roughness of 2.4 nm and photoluminescence measurement of polymer/fullerene derivative blend film suggests effective dissociation of exciton.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thin films of nanocrystalline MgO were deposited on glass/Si substrates by rf/dc sputtering from metallic Mg, and ceramic MgO targets. The purpose of this study is to identify the differences in the properties, magnetic in particular, of MgO films obtained on sputter deposition from 99.99% pure metallic Mg target in a controlled Nitrogen + Oxygen partial pressure (O(2)pp)] atmosphere as against those deposited using an equally pure ceramic MgO target in argon + identical oxygen ambience conditions while maintaining the same total pressure in the chamber in both cases. Characterization of the films was carried out by X-ray diffraction, focussed ion beam cross sectioning, atomic force microscopy and SQUID-magnetometry. The `as-obtained' films from pure Mg target are found to be predominantly X-ray amorphous, while the ceramic MgO target gives crystalline films, (002) oriented with respect to the film plane. The films consisted of nano-crystalline grains of size in the range of about 0.4 to 4.15 nm with the films from metallic target being more homogeneous and consisting of mostly subnanometer grains. Both the types of films are found to be ferromagnetic to much above room temperature. We observe unusually high maximum saturation magnetization (MS) values of 13.75 emu/g and similar to 4.2 emu/g, respectively for the MgO films prepared from Mg, and MgO targets. The origin of magnetism in MgO films is attributed to Mg vacancy (V-Mg), and 2p holes localized on oxygen sites. The role of nitrogen in enhancing the magnetic moments is also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ethanol sensing properties of porous Cr2O3 thin films deposited by the ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture is reported. The impact of the precursor selection and various deposition parameters on the film crystallinity, surface morphology and stoichiometry are studied using thermo-gravimetric analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and atomic force microscopy techniques. The film morphology exhibits a highly porous nature, as a result of the exothermic combustion reaction during film deposition. The gas sensing properties of these films are investigated in the temperature range of 200-375 degrees C for ethanol. The films show two different regions of response for ethanol above and below 300 degrees C. A good relationship between the response and the ethanol concentration is observed, and is modeled using an empirical relation. The possible mechanism and the surface chemical reactions of ethanol over the chromium oxide surface are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

N-Decanoyl-L-alanine (DA) was mixed with either colorless 4,4-bipyridine (BP) or various derivatives such as chromogenic oligo(p-phenylenevinylene) (OPV) functionalized with isomeric pyridine termini in specific molar ratios. This mixtures form salt-type gels in a water/ethanol (2:1, v/v) mixture. The gelation properties of these two-component mixtures could be modulated by variation of the position of the N atom of the end pyridyl groups in OPVs. The presence of acid-base interactions in the self-assembly of these two-component systems leading to gelation was probed in detail by using stoichiometry-dependent UV/Vis and FTIR spectroscopy. Furthermore, temperature-dependent UV/Vis and fluorescence spectroscopy clearly demonstrated a J-type aggregation mode of these gelator molecules during the sol-to-gel transition process. Morphological features and the arrangement of the molecules in the gels were examined by using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) techniques. Calculation of the length of each molecular system by energy minimization in its extended conformation and comparison with the XRD patterns revealed that this class of gelator molecules adopts lamellar organizations. Rheological properties of these two-component systems provided clear evidence that the flow behavior could be modulated by varying the acid/amine ratio. Polarized optical microscopy (POM), differential scanning calorimetry (DSC), and XRD results revealed that the solid-phase behavior of such two-component mixtures (acid/base=2:1) varied significantly upon changing the proton-acceptor part from BP to OPV. Interestingly, the XRD pattern of these acid/base mixtures after annealing at their associated isotropic temperature was significantly different from that of their xerogels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Schottky barrier devices of metal/semiconductor/metal structure were fabricated using organic semiconductor polyaniline (PANI) and aluminium thin film cathode. Aluminium contacts were made by thermal evaporation technique using two different forms of metals (bulk and nanopowder). The structure and surface morphology of these films were investigated by X-ray diffraction, scanning electron microscopy, and atomic force microscopy. Grain size of the as-deposited films obtained by Scherrer's method, modified Williamson-Hall method, and SEM were found to be different. Current-voltage (I-V) characteristic of Schottky barrier device structure indicates that the calculated current density (J) for device fabricated from aluminium nanopowder is more than that from aluminium in bulk form.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present herein a short tripeptide sequence (Lys-Phe-Gly or KFG) that is situated in the juxtamembrane region of the tyrosine kinase nerve growth factor (Trk NGF) receptors. KFG self-assembles in water and shows a reversible and concentration-dependent switching of nanostructures from nanospheres (vesicles) to nanotubes, as evidenced by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. The morphology change was associated with a transition in the secondary structure. The tripeptide vesicles have inner aqueous compartments and are stable at pH7.4 but rupture rapidly at pH approximate to 6. The pH-sensitive response of the vesicles was exploited for the delivery of a chemotherapeutic anticancer drug, doxorubicin, which resulted in enhanced cytotoxicity for both drug-sensitive and drug-resistant cells. Efficient intracellular release of the drug was confirmed by fluorescence-activated cell sorting analysis, fluorescence microscopy, and confocal microscopy.