942 resultados para AQUEOUS NABR SOLUTIONS
Resumo:
the electrochemical oxidation of ferrocene on Pt in dimethylformamide, ethanol, propylene carbonate and their aqueous solutions was studied at 25°C. The concentration of the supporting electrolyte, NaClO4, was varied from 0.1 to 0.5 M. The results show that the electrode process may be described as a quasi-reversible one-electron charge transfer, followed by slow decomposition of the oxidized species. © 1987.
Resumo:
2-Mercaptobenzothiazole loaded on previously polystyrene treated clay was prepared, characterized and used for sorption and preconcentration of Hg(II) Pb(II), Zn(II) and Cd(II) from an aqueous solution. The support used was a natural clay previously treated with sulphuric acid solution. Adsorptiou isotherms of metal ions from aqueous solutions as function of pH were studied at 298 K. Conditions for quantitative retention and elution were established for each metal by batch and column methods. The chemically treated clay was very selective to Hg(II) in solution in which Zn(II), Cd(II), Pb(II) and some transition metal ions were also present.
Resumo:
Probe-beam deflection (PBD) was used to monitor concentration gradients of anions adjacent to the surface of a platinum electrode in acidic aqueous media containing H3PO4. PBD can measure the potential-dependent extent of adsorption of H2PO4- on the Pt electrode surface and permits the Langmuir isotherm to be fitted to the experimental data. The value thus obtained for the surface concentration was 1.3 × 10-11 mol mm -2, or 1.7 atoms of Pt per H2PO4-. Also, the electron transfer number obtained was 0.24, signifying an incomplete transfer of charge, and the equilibrium constant is 1.80 suggesting a reversible adsorption process. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Euphorbia tirucalli Lineu (Aveloz) belongs to the family Euphorbiaceae and is used in the treatment of cancer and warts. Some studies have reported that phorbol esters are the active principles responsible for the antitumor activity of Aveloz. The production of these molecules occurs in greater quantity in May, during the morning. This study aimed to evaluate whether the physico-chemical parameters of Aveloz homeopathic aqueous solutions such as pH, electrical conductivity and refractive index change due to storage time. Such parameters were measured regularly for 180 days. All solutions were prepared according to the method of grinding with lactose and subsequent dissolution in aqueous medium, as described in the Brazilian Homeopathic Pharmacopoeia, using as starting point the Aveloz latex collected in May. Homeopathic aqueous solutions containing only lactose were also prepared and evaluated as a control group. The potencies that were analyzed for electrical conductivity, pH and refractive index were: 4cH, 7cH, 9cH, 12cH, 14cH, 15cH, 29cH, 30cH. As a result, we found out that there was only statistical difference (p=0.035) in electrical conductivity between the homeopathic solutions containing Aveloz and the homeopathic solutions without Aveloz, when 15cH potency was compared. We also observed that the electrical conductivity increased with the aging of the solutions but is not directly related to the pH or the refractive index of the solutions, indicating that the aging process may alter the electrical conductivity of the homeopathic medicines. The presence of gas inside the glass that stores these solutions may affect the electrical conductivity measurements. Finally, no statistically significant difference was observed (p> 0.05) in the pH and refractive index.
Resumo:
This paper reports our initial research to obtain SrWO4 microcrystals by the injection of ions into a hot aqueous solution and their photocatalytic (PC) properties. These microcrystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements and Fourier transform (FT)-Raman spectroscopy. The shape and average size of these SrWO 4 microcrystals were observed by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). In addition, we have investigated the PC activity of microcrystals for the degradation of rhodamine B (RhB) and rhodamine 6G (Rh6G) dyes. XRD patterns, Rietveld refinement data and FT-Raman spectroscopy confirmed that SrWO4 microcrystals have a scheelite-type tetragonal structure without deleterious phases. FT-Raman spectra exhibited 12 Raman-active modes in a range from 50 to 1000 cm-1. FE-SEM and TEM images suggested that the SrWO4 microcrystals (rice-like - 95%; star-, flower-, and urchin-like - 5%) were formed by means of primary/secondary nucleation events and self-assembly processes. Based on these FE-SEM/TEM images, a crystal growth mechanism was proposed and discussed in details in this work. Finally, a good PC activity was first discovered of the SrWO4 microcrystals for the degradation of RhB after 80 min and Rh6G after 50 min dyes under ultraviolet-light, respectively. © 2012 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder.
Resumo:
Titanium and its alloys are widely used as biomaterials due to their mechanical, chemical and biological properties. To enhance the biocompatibility of titanium alloys, various surface treatments have been proposed. In particular, the formation of titanium oxide nanotubes layers has been extensively examined. According to the literature, it is possible to induce the growth of TiO2 on the surface of titanium, employing the aqueous anodizing electrolyte. This Ti-7.5Mo alloy was anodized in glycerol electrolytes containg 0.25 wt% of NH4F, with variations in time, voltage and calcinations temperature. After anodization, the sample surfaces were analyzed with a field emission scanning electron microscopy, DRX and contact angle measurements. It was possible to observe the formation of TiO2 on the surface and these findings represent a simple surface treatment for Ti alloys that has high potential for biomedical applications. Copyright © 2013 American Scientific Publishers. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Water-miscible ionic liquids (ILs) may be salted out using kosmotropic salts such as potassium phosphate (K3PO4) to form salt-salt aqueous biphasic systems (ABS). The effect of temperature on these systems has been studied using phase diagrams and it is observed that the degree of binodal shift decreases (requiring lower IL and kosmotropic salt concentrations) with the increase of temperature following the trend [C(4)mim]Cl > [C(4)py]Cl > [C(4)mmim] Cl > [N-4444]Cl. This trend can be correlated with the decreasing hydrogen bonding abilities of each salt. The phase behavior was also interpreted on the basis of critical solution temperature behavior of pure aqueous ionic liquid solutions. Additionally, the distribution of alcohols in these systems was studied as a function of temperature and it was found that the distribution ratios did not change with changes in temperature. The Gibbs energy of transfer of a methylene group in these systems and correlation to tie-line length was also determined. It was concluded that while the miscibility of alcohols increases in the ILs with increasing temperature, phase divergence in the aqueous biphasic system decreases, and thus these competing forces tend to cancel each other out for small polar molecules. A comparison is provided for the response to temperature in the currently studied salt-salt systems and analogous ABS formed by the addition of hydrophilic polymers to kosmotropic salts (polymer-salt) or other polymers (polymer-polymer).
Resumo:
We study the photodecomposition of phospholipid bilayers in aqueous solutions of methylene blue. Observation of giant unilamellar vesicles under an optical microscope reveals a consistent pattern of membrane disruption as a function of methylene blue concentration and photon density for different substrates supporting the vesicles.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Information on the solvation in mixtures of water, W, and the ionic liquids, ILs, 1-allyl-3-R-imidazolium chlorides; R = methyl, 1-butyl, and 1-hexyl, has been obtained from the responses of the following solvatochromic probes: 2,6-dibromo-4-[(E)-2-(1-R-pyridinium-4-yl)ethenyl] phenolate, R = methyl, MePMBr2; 1-octyl, OcPMBr(2), and the corresponding quinolinium derivative, MeQMBr(2). A model developed for solvation in binary mixtures of W and molecular solvents has been extended to the present mixtures. Our objective is to assess the relevance to solvation of hydrogen-bonding and the hydrophobic character of the IL and the solvatochromic probe. Plots of the medium empirical polarity, E-T(probe) versus its composition revealed non-ideal behavior, attributed to preferential solvation by the IL and, more efficiently, by the IL-W hydrogen-bonded complex. The deviation from linearity increases as a function of increasing number of carbon atoms in the alkyl group of the IL, and is larger than that observed for solvation by W plus molecular solvents (1-propanol and 2-(1-butoxy)ethanol) that are more hydrophobic than the ILs investigated. This enhanced deviation is attributed to the more organized structure of the ILs proper, which persists in their aqueous solutions. MeQMBr(2) is more susceptible to solvent lipophilicity than OcPMBr(2), although the former probe is less lipophilic. This enhanced susceptibility agrees with the important effect of annelation on the contributions of the quinonoid and zwitterionic limiting structures to the ground and excited states of the probe, hence on its response to both medium composition and lipophilicity of the IL.
Resumo:
Solar reactors can be attractive in photodegradation processes due to lower electrical energy demand. The performance of a solar reactor for two flow configurations, i.e., plug flow and mixed flow, is compared based on experimental results with a pilot-scale solar reactor. Aqueous solutions of phenol were used as a model for industrial wastewater containing organic contaminants. Batch experiments were carried out under clear sky, resulting in removal rates in the range of 96100?%. The dissolved organic carbon removal rate was simulated by an empirical model based on neural networks, which was adjusted to the experimental data, resulting in a correlation coefficient of 0.9856. This approach enabled to estimate effects of process variables which could not be evaluated from the experiments. Simulations with different reactor configurations indicated relevant aspects for the design of solar reactors.
Resumo:
The aim of this study was to assess, using the DPPH assay, the antioxidant activity of several substances that could be proposed to immediately revert the problems caused by bleaching procedures. The percentage of antioxidant activity (AA%) of 10% ascorbic acid solution (AAcidS), 10% ascorbic acid gel (AAcidG), 10% sodium ascorbate solution (SodAsS), 10% sodium ascorbate gel (SodAsG), 10% sodium bicarbonate (Bicarb), Neutralize® (NE), Desensibilize® (DES), catalase C-40 at 10 mg/mL (CAT), 10% alcohol solution of alpha-tocopherol (VitE), Listerine® (LIS), 0.12% chlorhexidine (CHX), Croton Lechleri (CL), 10 % aqueous solution of Uncaria Tomentosa (UT), artificial saliva (ArtS) and 0.05% sodium fluoride (NaF) was assessed in triplicate by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical assay. All substances exhibited antioxidant activity, except for CL. AAcidS, AAcidG and VitE exhibited the highest AA% (p<0.05). On the contrary, CHX, NE, LIS and NaF showed the lowest AA% (p<0.05). In conclusion, AAcidS, AAcidG, SodAsS, SodAsG and VitE presented the highest antioxidant activity among substances tested in this study. The DPPH assay provides an easy and rapid way to evaluate potential antioxidants.
Resumo:
In this thesis, three nitroxide based ionic systems were used to investigate structure and dynamics of their respective solutions in mixed solvents by means of electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopy at X- and W-band (9.5 and 94.5 GHz, respectively). rnFirst, the solvation of the inorganic radical Fremy’s salt (K2ON(SO3)2) in isotope substituted binary solvent mixtures (methanol/water) was investigated by means of high-field (W-band) pulse ENDOR spectroscopy and molecular dynamics (MD) simulations. From the analysis of orientation-selective 1H and 2H ENDOR spectra the principal components of the hyperfine coupling (hfc) tensor for chemically different protons (alcoholic methyl vs. exchangeable protons) were obtained. The methyl protons of the organic solvent approach with a mean distance of 3.5 Å perpendicular to the approximate plane spanned by ON(S)2 of the probe molecule. Exchangeable protons were found to be distributed isotropically, approaching closest to Fremy’s salt from the hydrogen-bonded network around the sulfonate groups. The distribution of exchangeable and methyl protons as found in MD simulations is in full agreement with the ENDOR results. The solvation was found to be similar for the studied solvent ratios between 1:2.3 and 2.3:1 and dominated by an interplay of H-bond (electrostatic) interactions and steric considerations with the NO group merely involved into H-bonds.rnFurther, the conformation of spin labeled poly(diallyldimethylammonium chloride) (PDADMAC) solutions in aqueous alcohol (methanol, ethanol, n-propanol, ethylene glycol, glycerol) mixtures in dependence of divalent sodium sulfate was investigated with double electron-electron resonance (DEER) spectroscopy. The DEER data was analyzed using the worm-like chain model which suggests that in organic-water solvent mixtures the polymer backbones are preferentially solvated by the organic solvent. We found a less serve impact on conformational changes due to salt than usually predicted in polyelectrolyte theory which stresses the importance of a delicate balance of hydrophobic and electrostatic interactions, in particular in the presence of organic solvents.rnFinally, the structure and dynamics of miniemulsions and polymerdispersions prepared with anionic surfactants, that were partially replaced by a spin labeled fatty acid in presence and absence of a lanthanide beta-diketonate complex was characterized by CW EPR spectroscopy. Such miniemulsions form multilayers with the surfactant head group bound to the lanthanide ion. Beta-diketonates were formerly used as NMR shift reagents and nowadays find application as luminescent materials in OLEDs and LCDs and as contrast agent in MRT. The embedding of the complex into a polymer matrix results in an easy processable material. It was found that the structure formation takes place in miniemulsion and is preserved during polymerization. For surfactants with carboxyl-head group a higher order of the alkyl chains and less lateral diffusion is found than for sulfat-head groups, suggesting a more uniform and stronger coordination to the metal ion. The stability of these bilayers depends on the temperature and the used surfactant which should be considered for the used polymerization temperature if a maximum output of the structured regions is wished.