956 resultados para ABSCISIC-ACID BIOSYNTHESIS
Resumo:
The ccpA gene was inactivated in the polyhydroxybutyrate (PHB)-producing strain Bacillus sp. MA3.3 in order to reduce glucose catabolite repression over pentoses and develop improved bacterial strains for the production of PHB from lignocellulosic hydrolysates. Mutant Bacillus sp. MSL7 Delta CcpA are unable to grow on glucose and ammonia as sole carbon and nitrogen sources, respectively. Supplementation of glutamate as the nitrogen source or the substitution of the carbon source by xylose allowed the mutant to partially recover its growth performance. RT-PCR showed that CcpA stimulates the expression of the operon (gltAB), responsible for ammonia assimilation via glutamate in Bacillus sp. MA3.3. Moreover, it was demonstrated that the supplementation of xylose or glutamate was capable of stimulating gltAB operon expression independently of CcpA. In PHB production experiments in mineral media, it has been observed that the glucose catabolite repression over the pentoses was partially released in MSL7. Although the carbohydrate consumption is faster in the ccpA mutant, the biomass and PHB biosynthesis are lower, even with supplementation of glutamate. This is attributed to an increase of acetyl-CoA flux towards the tricarboxylic acid cycle observed in the mutant. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Due to the effect of catabolite repression, sugar mixtures cannot be metabolized in a rapid and efficient way implicating in lower productivity in bioprocesses using lignocellulosic hydrolysates. In gram-negative bacteria, this mechanism is mediated by the phosphotransferase system (PTS), which concomitantly internalizes and phosphorylates sugars. In this study, we isolated a UV mutant of Burkholderia sacchari, called LFM828, which transports hexoses and pentoses by a non-PTS uptake system. This mutant presented released glucose catabolite repression over the pentoses. In mixtures of glucose, xylose, and arabinose, specific growth rates and the specific sugar consumption rates were, respectively, 10 and 23% higher in LFM828, resulting in a reduced time to exhaust all sugars in the medium. However, in polyhydroxybutyrate (PHB) biosynthesis experiments it was necessary the supplementation of yeast extract to maintain higher values of growth rate and sugar consumption rate. The deficient growth in mineral medium was partially recovered by replacing the ammonium nitrogen source by glutamate. It was demonstrated that the ammonium metabolism is not defective in LFM828, differently from ammonium, glutamate can also be used as carbon and energy allowing an improvement on the carbohydrates utilization for PHB production in LFM828. In contrast, higher rates of ammonia consumption and CO(2) production in LFM828 indicate altered fluxes through the central metabolism in LFM828 and the parental. In conclusion, PTS plays an important role in cell physiology and the elimination of its components has a significant impact on catabolite repression, carbon flux distribution, and PHB biosynthesis in B. sacchari.
Resumo:
The production of PHA from plant oils by Pseudomonas species soil isolated from a sugarcane crop was evaluated. Out of 22 bacterial strains three were able to use efficiently plant oils to grow and to accumulate PHA. Pseudomonas putida and Pseudomonas aeruginosa strains produced PHA presenting differences on monomer composition compatible with variability on monomer specificity of their PHA biosynthesis system. The molar fraction of 3-hydroxydodecanoate detected in the PHA was linearly correlated to the oleic acid supplied. A non-linear relationship between the molar fractions of 3-hydroxy-6-dodecenoate (3HDd Delta(6)) detected in PHA and the linoleic acid supplied was observed, compatible with saturation in the biosynthesis system capability to channel intermediate of P-oxidation to PHA synthesis. Although P. putida showed a higher 3HDd Delta(6) yield from linoleic acid when compared to P. aeruginosa, in both species it was less than 10% of the maximum theoretical value. These results contribute to the knowledge about the biosynthesis of PHA with a controlled composition from plant oils allowing in the future establishing the production of these polyesters as tailor-made polymers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The isoprenoid metabolic pathway in protozoa of the Leishmania genus exhibits distinctive characteristics. These parasites, as well as other members of the Trypanosomatidae family, synthesize ergosterol, instead of cholesterol, as the main membrane sterol lipid. Leishmania has been shown to utilize leucine, instead of acetate as the main precursor for sterol biosynthesis. While mammalian dolichols are molecules containing 15-23 isoprene units, Leishmania amazonensis promastigotes synthesize dolichol of 11 and 12 units. In this paper, we show that the intracellular stages of L. amazonensis, amastigotes, synthesize mainly polyprenols of 9 isoprene units, instead of dolichol. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Three new nitrogen-containing terpenes related to pyrodysinoic acid (1) have been isolated from the sponge Dysidea robusta collected in Brazil. Isopyrodysinoic acid (2), 13-hydroxyisopyrodysinoic acid (3), and pyrodysinoic acid B (4) were obtained from the crude extract of D. robusta and identified by analysis of spectroscopic data. Pyrodysinoic acid B (4) is the first furodysin or furodysinin sesquiterpene derivative with a trans junction between the two six-membered rings of the 1,2,3,4,4a,7,8,8a-octahydro-1,1,6-trimethylnaphthalene moiety.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Amino acids are well metabolized by Streptomyces clavuligerus during the production of clavulanic acid using glycerol as main carbon and energy source. However, only a few amino acids such as arginine and ornithine are favorable for CA biosynthesis. The aim of this work was to optimize the glycerol:ornithine molar ratio in the feed medium containing only these compounds to maximize CA production in continuous cultivation. A minimum number of experiments were performed by means of a simple two-level full-factorial central composite design to investigate the combined effect of glycerol and ornithine feeding on the CA concentration during the intermittent and continuous process in shake-flasks. Statistical analysis of the experimental data using the response surface methodology showed that a glycerol-to-ornithine molar ratio of approximately 40:1 in the feed medium resulted in the highest CA concentration when fermentation was stopped. Under these optimized conditions, in bench-scale fermentor runs, the CA concentration reached more than double the concentration obtained in shake-flasks runs. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The biosynthesis of (2S)-2-methyl-2-(4'-methyl-3-pentenyl)-8-(3-methyl-2-butenyl)-2H-1-benzopyran-6-carboxylic acid (gaudichaudianic acid), the major metabolite in leaves and roots of Piper gaudichaudianum Kunth (Piperaceae), has been investigated employing [1(-13) C]-D-glucose as precursor. The labelling pattern in the isolated gaudichaudianic acid was determined by quantitative 13 C NMR spectroscopy analysis and was consistent with involvement of both mevalonic acid and 2-C-methyl-D-erythritol-4-phosphate pathways in the formation of the dimethylallyl- and geranyl-derived moieties. The results confirmed that both plastidic and cytoplasmic pathways are able to provide isopentenyl diphosphate units for prenylation of p-hydroxybenzoic acid. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Type-1 diabetic patients experience hyperketonemia caused by an increase in fatty acid metabolism. Thus, the aim of this study was to measure the effect of ketone bodies as suppressors of oxidizing species produced by stimulated neutrophils. Both acetoacetate and 3-hydroxybutyrate have suppressive effect on the respiratory burst measured by luminol-enhanced chemiluminescence. Through measurements of hypochlorous acid production, using neutrophils or the myeloperoxidase/H2O2/Cl- system, it was found that acetoacetate but not 3-hydroxybutyrate is able to inhibit the generation of this antimicrobial oxidant. The superoxide anion scavenging properties were confirmed by ferricytochrome C reduction and lucigenin-enhanced chemiluminescence assays. However, ketone bodies did not alter the rate of oxygen uptake by stimulated neutrophils, measured with an oxygen electrode. A strong inhibition of the expression of the cytokine IL-8 by cultured neutrophils was also observed; this is discussed with reference to the antioxidant-like property of acetoacetate. © 2004 Pharmaceutical Society of Japan.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Credneramides A (1) and B (2), two vinyl chloride-containing metabolites, were isolated from a Papua New Guinea collection of cf. Trichodesmium sp. nov. and expand a recently described class of vinyl chloride-containing natural products. The precursor fatty acid, credneric acid (3), was isolated from both the aqueous and organic fractions of the parent fraction as well as from another geographically and phylogenetically distinct cyanobacterial collection (Panama). Credneramides A and B inhibited spontaneous calcium oscillations in murine cerebrocortical neurons at low micro-molar concentrations (1, IC50 4.0 mu M; 2, IC50 3.8 mu M).
Resumo:
Lactic acid bacteria are used in food production to provide desirable organoleptic characteristics, and can also act as biopreservatives, controlling the growth of undesirable microorganisms. In this study, we examined the antimicrobial action of Lactobacillus sakei 2a and its concentrated acid extract against food-borne Salmonella spp. The extract was obtained by acid extraction from culture broth of L. sakei 2a and was designated extract 2a. We determined that extract 2a had significant activity (approximately 500 AU ml(-1)). We used different antimicrobial substances alone or in combination with extract 2a to evaluate the inhibitory activity of the various treatments on a pool of five Salmonella strains. The pathogen Listeria monocytogenes Scott A Cm-r Em(r) was used as an indicator strain of inhibitory activity. In summary, all antimicrobials substances that were tested showed an inhibitory effect against the growth of Salmonella, andthis action was enhanced in the presence of extract 2a. Moreover, among the treatments applied, the combination of extract 2a and 0.1% lactic acid exhibited the most potent inhibitory effect towards the pool of Salmonella strains. Our findings indicate that L. sakei 2a and extract 2a, especially in combination with other antimicrobials, present potential technological application in the control of salmonellae in foods.