870 resultados para 240501 Acoustics and Acoustical Devices
Resumo:
Terahertz (THz) technology has been generating a lot of interest because of the potential applications for systems working in this frequency range. However, to fully achieve this potential, effective and efficient ways of generating controlled signals in the terahertz range are required. Devices that exhibit negative differential resistance (NDR) in a region of their current-voltage (I-V ) characteristics have been used in circuits for the generation of radio frequency signals. Of all of these NDR devices, resonant tunneling diode (RTD) oscillators, with their ability to oscillate in the THz range are considered as one of the most promising solid-state sources for terahertz signal generation at room temperature. There are however limitations and challenges with these devices, from inherent low output power usually in the range of micro-watts (uW) for RTD oscillators when milli-watts (mW) are desired. At device level, parasitic oscillations caused by the biasing line inductance when the device is biased in the NDR region prevent accurate device characterisation, which in turn prevents device modelling for computer simulations. This thesis describes work on I-V characterisation of tunnel diode (TD) and RTD (fabricated by Dr. Jue Wang) devices, and the radio frequency (RF) characterisation and small signal modelling of RTDs. The thesis also describes the design and measurement of hybrid TD oscillators for higher output power and the design and measurement of a planar Yagi antenna (fabricated by Khalid Alharbi) for THz applications. To enable oscillation free current-voltage characterisation of tunnel diodes, a commonly employed method is the use of a suitable resistor connected across the device to make the total differential resistance in the NDR region positive. However, this approach is not without problems as the value of the resistor has to satisfy certain conditions or else bias oscillations would still be present in the NDR region of the measured I-V characteristics. This method is difficult to use for RTDs which are fabricated on wafer due to the discrepancies in designed and actual resistance values of fabricated resistors using thin film technology. In this work, using pulsed DC rather than static DC measurements during device characterisation were shown to give accurate characteristics in the NDR region without the need for a stabilisation resistor. This approach allows for direct oscillation free characterisation for devices. Experimental results show that the I-V characterisation of tunnel diodes and RTD devices free of bias oscillations in the NDR region can be made. In this work, a new power-combining topology to address the limitations of low output power of TD and RTD oscillators is presented. The design employs the use of two oscillators biased separately, but with the combined output power from both collected at a single load. Compared to previous approaches, this method keeps the frequency of oscillation of the combined oscillators the same as for one of the oscillators. Experimental results with a hybrid circuit using two tunnel diode oscillators compared with a single oscillator design with similar values shows that the coupled oscillators produce double the output RF power of the single oscillator. This topology can be scaled for higher (up to terahertz) frequencies in the future by using RTD oscillators. Finally, a broadband Yagi antenna suitable for wireless communication at terahertz frequencies is presented in this thesis. The return loss of the antenna showed that the bandwidth is larger than the measured range (140-220 GHz). A new method was used to characterise the radiation pattern of the antenna in the E-plane. This was carried out on-wafer and the measured radiation pattern showed good agreement with the simulated pattern. In summary, this work makes important contributions to the accurate characterisation and modelling of TDs and RTDs, circuit-based techniques for power combining of high frequency TD or RTD oscillators, and to antennas suitable for on chip integration with high frequency oscillators.
Resumo:
[EN] Parasitic diseases have a great impact in human and animal health. The gold standard for the diagnosis of the majority of parasitic infections is still conventional microscopy, which presents important limitations in terms of sensitivity and specificity and commonly requires highly trained technicians. More accurate molecular-based diagnostic tools are needed for the implementation of early detection, effective treatments and massive screenings with high-throughput capacities. In this respect, sensitive and affordable devices could greatly impact on sustainable control programmes which exist against parasitic diseases, especially in low income settings. Proteomics and nanotechnology approaches are valuable tools for sensing pathogens and host alteration signatures within micro fluidic detection platforms. These new devices might provide novel solutions to fight parasitic diseases. Newly described specific parasite derived products with immune-modulatory properties have been postulated as the best candidates for the early and accurate detection of parasitic infections as well as for the blockage of parasite development. This review provides the most recent methodological and technological advances with great potential for biosensing parasites in their hosts, showing the newest opportunities offered by modern “-omics” and platforms for parasite detection and control.
Resumo:
Self-assembled monolayers (SAMs) are highly promising materials for molecular engineering of electronic and spintronics devices thanks to their surface functionalization properties. In this direction, alkylphosphonic acids have been used to functionalize the most common ferromagnetic electrode in organic spintronics: La2/3Sr1/3MnO3 (LSMO). However, a study on the influence of SAMs grafting on LSMO electronic and magnetic properties is still missing. In this letter, we probe the influence of alkylphosphonic acids-based SAMs on the electronic and magnetic properties of the LSMO surface using different spectroscopies. We observe by X-ray photoemission and X-ray absorption that the grafting of the molecules on the LSMO surface induces a reduction of the Mn oxidation state. Ultraviolet photoelectron spectroscopy measurements also show that the LSMO work function can be modified by surface dipoles opening the door to both tune the charge and spin injection efficiencies in organic devices such as organic light-emitting diodes.
Resumo:
Titanium dioxide nanocrystals are an important commercial product used primarily in white pigments and abrasives, however, more recently the anatase form of TiO2 has become a major component in electrochemical and photoelectrochemical devices. An important property of titanium dioxide nanocrystals for electrical applications is the degree of crystallinity. Numerous preparation methods exist for the production of highly crystalline TiO2 particles. The majority of these processes require long reaction times, high pressures and temperatures (450–1400 °C). Recently, hydrothermal treatment of colloidal TiO2 suspensions has been shown to produce quality crystalline products at low temperatures (<250 °C). In this paper we extend this idea utilising a direct microwave heating source. A comparison between convection and microwave hydrothermal treatment of colloidal TiO2 is presented. The resulting highly crystalline TiO2 colloids were characterised using Raman spectroscopy, XRD, TEM, and electron diffraction. The results show that the microwave treatment of colloidal TiO2 gives comparable increases in crystallinity with respect to normal hydrothermal treatments while requiring significantly less time and energy than the hydrothermal convection treatment.
Resumo:
The shortage of donor hearts for patients with end stage heart failure has accelerated the development of ventricular assist devices (VAD) that act as a replacement heart. Mechanical devices involving pulsatile, axial and centrifugal devices have been proposed. Recent clinical developments indicate that centrifugal devices are not only beneficial for bridge to transplantation applications, but may also aid myocardial recovery. The results of a recent study have shown that patients who received a VAD have extended lives and improved quality of life compared to recipients of drug therapy. Unfortunately 25% of these patients develop right heart failure syndrome, sepsis and multi-organ failure. It was reported that 17% of patients initially receiving an LVAD later required a right ventricular assist device (RVAD). Hence, current research focus is in the development of a bi-ventricular assist device (BVAD). Current BVAD technology is either too bulky or necessitates having to implant two pumps working independently. The latter requires two different controllers for each pump leading to the potential complication of uneven flow dynamics and the requirements for a large amount of body space. This paper illustrates the combination of the LVAD and RVAD as one complete device to augment the function of both the left and right cardiac chambers with double impellers. The proposed device has two impellers rotating in counter directions, hence eliminating the necessity of the body muscles and tubing/heart connection to restrain the pump. The device will also have two separate chambers with independent rotating impeller for the left and right chambers. A problem with centrifugal impellers is the fluid stagnation underneath the impeller. This leads to thrombosis and blood clots.This paper presents the design, construction and location of washout hole to prevent thrombus for a Bi-VAD centrifugal pump. Results using CFD will be used to illustrate the superiority of our design concept in terms of preventing thrombus formation and hemolysis.
Resumo:
Worldwide, the current pattern of urban development is unsustainable and metropolitan planning and development strategies deliver poor environmental outcomes in relation to energy production. As a result, an increasing number of governments and private sector development companies are initiating projects that aim to deliver enhanced environmental outcomes rather than a ‘business as usual’ approach. This paper will summarise the findings from a study that explored the link between building orientation and energy efficiencies in sub-tropical and tropical climates. The study used a new thermal modelling software tool developed by CSIRO that responds more accurately to residential heating and cooling energy performance in those climate zones. This software tool responds to industry criticisms regarding cold climate modelling systems that do not make sufficient allowance for natural ventilation. The study examined a range of low, medium and high-density dwelling types and investigated the impact of orientation, insulation, ventilation and shading devices on energy efficiencies. This paper will examine the findings from the medium and high-density case study developments as these are relevant to residential developments in many South East Asian countries, such as Singapore, Hong Kong and Malaysia. Finally, the paper will explore the potential benefits that medium and high-density residential developments have in the development of ‘solar cities’ and ‘solar suburbs’.
Resumo:
Staff from QUT’s Creative Industries Faculty (Drama, Film & TV) collaborated with CARRS-Q (Centre for Accident Research and Road Safety – Queensland) to research, develop and produce a series of screen products. These products are designed to profile CARRS-Q for a variety of Australian and international audiences including potential students, research colleagues and collaborators, industry partners and professional bodies. They are designed for multiplatform display, including web, DVD and mobile devices. This project entails the adoption of practice-led research methodologies to explore and apply innovative screen production techniques including multi-image display; rapid-cut editing; and a combination of trained and non-trained talent.
Resumo:
Speaker verification is the process of verifying the identity of a person by analysing their speech. There are several important applications for automatic speaker verification (ASV) technology including suspect identification, tracking terrorists and detecting a person’s presence at a remote location in the surveillance domain, as well as person authentication for phone banking and credit card transactions in the private sector. Telephones and telephony networks provide a natural medium for these applications. The aim of this work is to improve the usefulness of ASV technology for practical applications in the presence of adverse conditions. In a telephony environment, background noise, handset mismatch, channel distortions, room acoustics and restrictions on the available testing and training data are common sources of errors for ASV systems. Two research themes were pursued to overcome these adverse conditions: Modelling mismatch and modelling uncertainty. To directly address the performance degradation incurred through mismatched conditions it was proposed to directly model this mismatch. Feature mapping was evaluated for combating handset mismatch and was extended through the use of a blind clustering algorithm to remove the need for accurate handset labels for the training data. Mismatch modelling was then generalised by explicitly modelling the session conditions as a constrained offset of the speaker model means. This session variability modelling approach enabled the modelling of arbitrary sources of mismatch, including handset type, and halved the error rates in many cases. Methods to model the uncertainty in speaker model estimates and verification scores were developed to address the difficulties of limited training and testing data. The Bayes factor was introduced to account for the uncertainty of the speaker model estimates in testing by applying Bayesian theory to the verification criterion, with improved performance in matched conditions. Modelling the uncertainty in the verification score itself met with significant success. Estimating a confidence interval for the "true" verification score enabled an order of magnitude reduction in the average quantity of speech required to make a confident verification decision based on a threshold. The confidence measures developed in this work may also have significant applications for forensic speaker verification tasks.
Resumo:
Acoustic emission (AE) technique is one of the popular diagnostic techniques used for structural health monitoring of mechanical, aerospace and civil structures. But several challenges still exist in successful application of AE technique. This paper explores various tools for analysis of recorded AE data to address two primary challenges: discriminating spurious signals from genuine signals and devising ways to quantify damage levels.
Resumo:
The use of metal stripes for the guiding of plasmons is a well established technique for the infrared regime and has resulted in the development of a myriad of passive optical components and sensing devices. However, the plasmons suffer from large losses around sharp bends, making the compact design of nanoscale sensors and circuits problematic. A compact alternative would be to use evanescent coupling between two sufficiently close stripes, and thus we propose a compact interferometer design using evanescent coupling. The sensitivity of the design is compared with that achieved using a hand-held sensor based on the Kretschmann style surface plasmon resonance technique. Modeling of the new interferometric sensor is performed for various structural parameters using finite-difference time-domain and COMSOL Multiphysics. The physical mechanisms behind the coupling and propagation of plasmons in this structure are explained in terms of the allowed modes in each section of the device.
Resumo:
For a screenwriter, the key challenge of writing genre movies is balancing formulaic convention (familiar plotlines, character types, themes) with generic invention (introducing novel generic elements or devices). The thriller genre is built around the elements of tension and suspense, and plot devices such as twists, red herrings, and cliff-hangers evoke uncertainty, anxiety and anticipation from the audience. For the feature film Savages Crossing, the question driving the screenplay was “How can the psychological thriller genre be renewed through elements of the family drama to challenge audience expectations?” While there are numerous sub-genres, each with thematic nuances, the psychological thriller typically revolves around a central antagonist. Taking this element as the focal point, the screenplay turned to family drama to revise this convention.
Resumo:
A growing body of research is looking at ways to bring the processes and benefits of online deliberation to the places they are about and in turn allow a larger, targeted proportion of the urban public to have a voice, be heard, and engage in questions of city planning and design. Seeking to take advantage of the civic opportunities of situated engagement through public screens and mobile devices, our research informed a public urban screen content application DIS that we deployed and evaluated in a wide range of real world public and urban environments. For example, it is currently running on the renowned urban screen at Federation Square in Melbourne. We analysed the data from these user studies within a conceptual framework that positions situated engagement across three key parameters: people, content, and location. We propose a way to identify the sweet spot within the nexus of these parameters to help deploy and run interactive systems to maximise the quality of the situated engagement for civic and related deliberation purposes.
Resumo:
Acoustic emission (AE) analysis is one of the several diagnostic techniques available nowadays for structural health monitoring (SHM) of engineering structures. Some of its advantages over other techniques include high sensitivity to crack growth and capability of monitoring a structure in real time. The phenomenon of rapid release of energy within a material by crack initiation or growth in form of stress waves is known as acoustic emission (AE). In AE technique, these stress waves are recorded by means of suitable sensors placed on the surface of a structure. Recorded signals are subsequently analysed to gather information about the nature of the source. By enabling early detection of crack growth, AE technique helps in planning timely retrofitting or other maintenance jobs or even replacement of the structure if required. In spite of being a promising tool, some challenges do still exist behind the successful application of AE technique. Large amount of data is generated during AE testing, hence effective data analysis is necessary, especially for long term monitoring uses. Appropriate analysis of AE data for quantification of damage level is an area that has received considerable attention. Various approaches available for damage quantification for severity assessment are discussed in this paper, with special focus on civil infrastructure such as bridges. One method called improved b-value analysis is used to analyse data collected from laboratory testing.
Resumo:
Electronic services are a leitmotif in ‘hot’ topics like Software as a Service, Service Oriented Architecture (SOA), Service oriented Computing, Cloud Computing, application markets and smart devices. We propose to consider these in what has been termed the Service Ecosystem (SES). The SES encompasses all levels of electronic services and their interaction, with human consumption and initiation on its periphery in much the same way the ‘Web’ describes a plethora of technologies that eventuate to connect information and expose it to humans. Presently, the SES is heterogeneous, fragmented and confined to semi-closed systems. A key issue hampering the emergence of an integrated SES is Service Discovery (SD). A SES will be dynamic with areas of structured and unstructured information within which service providers and ‘lay’ human consumers interact; until now the two are disjointed, e.g., SOA-enabled organisations, industries and domains are choreographed by domain experts or ‘hard-wired’ to smart device application markets and web applications. In a SES, services are accessible, comparable and exchangeable to human consumers closing the gap to the providers. This requires a new SD with which humans can discover services transparently and effectively without special knowledge or training. We propose two modes of discovery, directed search following an agenda and explorative search, which speculatively expands knowledge of an area of interest by means of categories. Inspired by conceptual space theory from cognitive science, we propose to implement the modes of discovery using concepts to map a lay consumer’s service need to terminologically sophisticated descriptions of services. To this end, we reframe SD as an information retrieval task on the information attached to services, such as, descriptions, reviews, documentation and web sites - the Service Information Shadow. The Semantic Space model transforms the shadow's unstructured semantic information into a geometric, concept-like representation. We introduce an improved and extended Semantic Space including categorization calling it the Semantic Service Discovery model. We evaluate our model with a highly relevant, service related corpus simulating a Service Information Shadow including manually constructed complex service agendas, as well as manual groupings of services. We compare our model against state-of-the-art information retrieval systems and clustering algorithms. By means of an extensive series of empirical evaluations, we establish optimal parameter settings for the semantic space model. The evaluations demonstrate the model’s effectiveness for SD in terms of retrieval precision over state-of-the-art information retrieval models (directed search) and the meaningful, automatic categorization of service related information, which shows potential to form the basis of a useful, cognitively motivated map of the SES for exploratory search.
Resumo:
To many aspiring writer/directors of feature film breaking into the industry may be perceived as an insurmountable obstacle. In contemplating my own attempt to venture into the world of feature filmmaking I have reasoned that a formulated strategy could be of benefit. As the film industry is largely concerned with economics I decided that writing a relatively low-cost feature film may improve my chances of being allowed directorship by a credible producer. As a result I have decided to write a modest feature film set in a single interior shooting location in an attempt to minimise production costs, therefore also attempting to reduce the perceived risk in hiring the writer as debut director. As a practice-led researcher, the primary focus of this research is to create a screenplay in response to my greater directorial aspirations and to explore the nature in which the said strategic decision to write a single-location film impacts on not only the craft of cinematic writing but also the creative process itself, as it pertains to the project at hand. The result is a comedy script titled Gravy, which is set in a single apartment and strives to maintain a fast comedic pace whilst employing a range of character and plot devices in conjunction with creative decisions that help to sustain cinematic interest within the confines of the apartment. In addition to the screenplay artifact, the exegesis also includes a section that reflects on the writing process in the form of personal accounts, decisions, problems and solutions as well as examination of other author’s works.