911 resultados para 1145


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DC9 workshop takes place on June 27, 2015 in Limerick, Ireland and is titled “Hackable Cities: From Subversive City Making to Systemic Change”. The notion of “hacking” originates from the world of media technologies but is increasingly often being used for creative ideals and practices of city making. “City hacking” evokes more participatory, inclusive, decentralized, playful and subversive alternatives to often top-down ICT implementations in smart city making. However, these discourses about “hacking the city” are used ambiguously and are loaded with various ideological presumptions, which makes the term also problematic. For some “urban hacking” is about empowering citizens to organize around communal issues and perform aesthetic urban interventions. For others it raises questions about governance: what kind of “city hacks” should be encouraged or not, and who decides? Can city hacking be curated? For yet others, trendy participatory buzzwords like these are masquerades for deeply libertarian neoliberal values. Furthermore, a question is how “city hacking” may mature from the tactical level of smart and often playful interventions to the strategic level of enduring impact. The Digital Cities 9 workshop welcomes papers that explore the idea of “hackable city making” in constructive and critical ways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing amount of information that is annotated against standardised semantic resources offers opportunities to incorporate sophisticated levels of reasoning, or inference, into the retrieval process. In this position paper, we reflect on the need to incorporate semantic inference into retrieval (in particular for medical information retrieval) as well as previous attempts that have been made so far with mixed success. Medical information retrieval is a fertile ground for testing inference mechanisms to augment retrieval. The medical domain offers a plethora of carefully curated, structured, semantic resources, along with well established entity extraction and linking tools, and search topics that intuitively require a number of different inferential processes (e.g., conceptual similarity, conceptual implication, etc.). We argue that integrating semantic inference in information retrieval has the potential to uncover a large amount of information that otherwise would be inaccessible; but inference is also risky and, if not used cautiously, can harm retrieval.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a concept for supporting distributed hands-on collaboration through interaction design for the physical and the digital workspace. The Blended Interaction Spaces concept creates distributed work environments in which collaborating parties all feel that they are present “here” rather than “there”. We describe thinking and inspirations behind the Blended Interaction Spaces concept, and summarize findings from fieldwork activities informing our design. We then exemplify the Blended Interaction Spaces concept through a prototype implementation of one of four concepts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proliferation of the web presents an unsolved problem of automatically analyzing billions of pages of natural language. We introduce a scalable algorithm that clusters hundreds of millions of web pages into hundreds of thousands of clusters. It does this on a single mid-range machine using efficient algorithms and compressed document representations. It is applied to two web-scale crawls covering tens of terabytes. ClueWeb09 and ClueWeb12 contain 500 and 733 million web pages and were clustered into 500,000 to 700,000 clusters. To the best of our knowledge, such fine grained clustering has not been previously demonstrated. Previous approaches clustered a sample that limits the maximum number of discoverable clusters. The proposed EM-tree algorithm uses the entire collection in clustering and produces several orders of magnitude more clusters than the existing algorithms. Fine grained clustering is necessary for meaningful clustering in massive collections where the number of distinct topics grows linearly with collection size. These fine-grained clusters show an improved cluster quality when assessed with two novel evaluations using ad hoc search relevance judgments and spam classifications for external validation. These evaluations solve the problem of assessing the quality of clusters where categorical labeling is unavailable and unfeasible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper explores novel driving experiences that make use of gamification and augmented reality in the car. We discuss our design considerations, which are grounded in road safety psychology and video game design theory. We aim to address the tension between safe driving practices and player engagement. Specifically, we propose a holistic, iterative thinking process inspired by game design cognition and share our insights generated through the application of this process. We present preliminary game concepts that blend digital components with physical elements from the driving environment. We further highlight how this design process helped us to iteratively evolve these concepts towards being safer while maintaining fun. These insights and game design cognition itself will be useful to the AutomotiveUI community investigating similar novel driving experiences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose an architecture for a rule-based online management systems (RuleOMS). Typically, many domain areas face the problem that stakeholders maintain databases of their business core information and they have to take decisions or create reports according to guidelines, policies or regulations. To address this issue we propose the integration of databases, in particular relational databases, with a logic reasoner and rule engine. We argue that defeasible logic is an appropriate formalism to model rules, in particular when the rules are meant to model regulations. The resulting RuleOMS provides an efficient and flexible solution to the problem at hand using defeasible inference. A case study of an online child care management system is used to illustrate the proposed architecture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new active learning query strategy for information extraction, called Domain Knowledge Informativeness (DKI). Active learning is often used to reduce the amount of annotation effort required to obtain training data for machine learning algorithms. A key component of an active learning approach is the query strategy, which is used to iteratively select samples for annotation. Knowledge resources have been used in information extraction as a means to derive additional features for sample representation. DKI is, however, the first query strategy that exploits such resources to inform sample selection. To evaluate the merits of DKI, in particular with respect to the reduction in annotation effort that the new query strategy allows to achieve, we conduct a comprehensive empirical comparison of active learning query strategies for information extraction within the clinical domain. The clinical domain was chosen for this work because of the availability of extensive structured knowledge resources which have often been exploited for feature generation. In addition, the clinical domain offers a compelling use case for active learning because of the necessary high costs and hurdles associated with obtaining annotations in this domain. Our experimental findings demonstrated that 1) amongst existing query strategies, the ones based on the classification model’s confidence are a better choice for clinical data as they perform equally well with a much lighter computational load, and 2) significant reductions in annotation effort are achievable by exploiting knowledge resources within active learning query strategies, with up to 14% less tokens and concepts to manually annotate than with state-of-the-art query strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present an empirical evaluation and comparison of two content extraction methods in HTML: absolute XPath expressions and relative XPath expressions. We argue that the relative XPath expressions, although not widely used, should be used in preference to absolute XPath expressions in extracting content from human-created Web documents. Evaluation of robustness covers four thousand queries executed on several hundred webpages. We show that in referencing parts of real world dynamic HTML documents, relative XPath expressions are on average significantly more robust than absolute XPath ones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visual information in the form of lip movements of the speaker has been shown to improve the performance of speech recognition and search applications. In our previous work, we proposed cross database training of synchronous hidden Markov models (SHMMs) to make use of external large and publicly available audio databases in addition to the relatively small given audio visual database. In this work, the cross database training approach is improved by performing an additional audio adaptation step, which enables audio visual SHMMs to benefit from audio observations of the external audio models before adding visual modality to them. The proposed approach outperforms the baseline cross database training approach in clean and noisy environments in terms of phone recognition accuracy as well as spoken term detection (STD) accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current mobile devices and streaming video services support high definition (HD) video, increasing expectation for more contents. HD video streaming generally requires large bandwidth, exerting pressures on existing networks. New generation of video compression codecs, such as VP9 and H.265/HEVC, are expected to be more effective for reducing bandwidth. Existing studies to measure the impact of its compression on users’ perceived quality have not been focused on mobile devices. Here we propose new Quality of Experience (QoE) models that consider both subjective and objective assessments of mobile video quality. We introduce novel predictors, such as the correlations between video resolution and size of coding unit, and achieve a high goodness-of-fit to the collected subjective assessment data (adjusted R-square >83%). The performance analysis shows that H.265 can potentially achieve 44% to 59% bit rate saving compared to H.264/AVC, slightly better than VP9 at 33% to 53%, depending on video content and resolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since 2006, we have been conducting urban informatics research that we define as “the study, design, and practice of urban experiences across different urban contexts that are created by new opportunities of real-time, ubiquitous technology and the augmentation that mediates the physical and digital layers of people networks and urban infrastructures” [1]. Various new research initiatives under the label “urban informatics” have been started since then by universities (e.g., NYU’s Center for Urban Science and Progress) and industry (e.g., Arup, McKinsey) worldwide. Yet, many of these new initiatives are limited to what Townsend calls, “data-driven approaches to urban improvement” [2]. One of the key challenges is that any quantity of aggregated data does not easily translate directly into quality insights to better understand cities. In this talk, I will raise questions about the purpose of urban informatics research beyond data, and show examples of media architecture, participatory city making, and citizen activism. I argue for (1) broadening the disciplinary foundations that urban science approaches draw on; (2) maintaining a hybrid perspective that considers both the bird’s eye view as well as the citizen’s view, and; (3) employing design research to not be limited to just understanding, but to bring about actionable knowledge that will drive change for good.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates communication protocols for relaying sensor data from animal tracking applications back to base stations. While Delay Tolerant Networks (DTNs) are well suited to such challenging environments, most existing protocols do not consider the available energy that is particularly important when tracking devices can harvest energy. This limits both the network lifetime and delivery probability in energy-constrained applications to the point when routing performance becomes worse than using no routing at all. Our work shows that substantial improvement in data yields can be achieved through simple yet efficient energy-aware strategies. Conceptually, there is need for balancing the energy spent on sensing, data mulling, and delivery of direct packets to destination. We use empirical traces collected in a flying fox (fruit bat) tracking project and show that simple threshold-based energy-aware strategies yield up to 20% higher delivery rates. Furthermore, these results generalize well for a wide range of operating conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous qualitative research has highlighted that temporality plays an important role in relevance for clinical records search. In this study, an investigation is undertaken to determine the effect that the timespan of events within a patient record has on relevance in a retrieval scenario. In addition, based on the standard practise of document length normalisation, a document timespan normalisation model that specifically accounts for timespans is proposed. Initial analysis revealed that in general relevant patient records tended to cover a longer timespan of events than non-relevant patient records. However, an empirical evaluation using the TREC Medical Records track supports the opposite view that shorter documents (in terms of timespan) are better for retrieval. These findings highlight that the role of temporality in relevance is complex and how to effectively deal with temporality within a retrieval scenario remains an open question.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Debates on gene patents have necessitated the analysis of patents that disclose and reference human sequences. In this study, we built an automated classifier that assigns sequences to one of nine predefined categories according to their functional roles in patent claims by applying natural language processing and supervised learning techniques. To improve its correctness, we experimented with various feature mappings, resulting in the maximal accuracy of 79%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we look at the concept of reversibility, that is, negating opposites, counterbalances, and actions that can be reversed. Piaget identified reversibility as an indicator of the ability to reason at a concrete operational level. We investigate to what degree novice programmers manifest the ability to work with this concept of reversibility by providing them with a small piece of code and then asking them to write code that undoes the effect of that code. On testing entire cohorts of students in their first year of learning to program, we found an overwhelming majority of them could not cope with such a concept. We then conducted think aloud studies of novices where we observed them working on this task and analyzed their contrasting abilities to deal with it. The results of this study demonstrate the need for better understanding our students' reasoning abilities, and a teaching model aimed at that level of reality.