929 resultados para 1.Tetrazolium salt
Resumo:
Fructose-1,6-bisphosphate (FBP), an endogenous intermediate of glycolysis, protects the brain against ischemia-reperfusion injury. The mechanisms of FBP protection after cerebral ischemia are not well understood. The current study was undertaken to determine whether FBP protects primary neurons against hypoxia and oxidative stress by preserving reduced glutathione (GSH). Cultures of pure cortical neurons were subjected to oxygen deprivation, a donor of nitric oxide and superoxide radicals (3-morpholinosydnonimine), an inhibitor of glutathione synthesis (L-buthionine-sulfoximine) or glutathione reductase (1,3-bis(2-chloroethyl)-1-nitrosourea) in the presence or absence of FBP (3.5 mM). Neuronal viability was determined using an 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. FBP protected neurons against hypoxia-reoxygenation and oxidative stress under conditions of compromised GSH metabolism. The efficacy of FBP depended on duration of hypoxia and was associated with higher intracellular GSH concentration, an effect partly mediated via increased glutathione reductase activity.
Resumo:
Compromised intrauterine fetal growth leading to low birth weight (<2500 g) is associated with adulthood renal and cardiovascular disease. The aim of this study was to assess the effect of salt intake on blood pressure (salt sensitivity) in children with low birth weight. White children (n=50; mean age: 11.3+/-2.1 years) born with low (n=35) or normal (n=15) birth weight and being either small or appropriate for gestational age (n=25 in each group) were investigated. The glomerular filtration rate was calculated using the Schwartz formula, and renal size was measured by ultrasound. Salt sensitivity was assigned if mean 24-hour blood pressure increased by >or=3 mm Hg on a high-salt diet as compared with a controlled-salt diet. Baseline office blood pressure was higher and glomerular filtration rate lower in children born with low birth weight as compared with children born at term with appropriate weight (P<0.05). Salt sensitivity was present in 37% and 47% of all of the low birth weight and small for gestational age children, respectively, higher even than healthy young adults from the same region. Kidney length and volume (both P<0.0001) were reduced in low birth weight children. Salt sensitivity inversely correlated with kidney length (r(2)=0.31; P=0.005) but not with glomerular filtration rate. We conclude that a reduced renal mass in growth-restricted children poses a risk for a lower renal function and for increased salt sensitivity. Whether the changes in renal growth are causative or are the consequence of the same abnormal "fetal programming" awaits clarification.
Resumo:
ABSTRACT: There is a high frequency of diarrhea and vomiting in childhood. As a consequence the focus of the present review is to recognize the different body fluid compartments, to clinically assess the degree of dehydration, to know how the equilibrium between extracellular fluid and intracellular fluid is maintained, to calculate the effective blood osmolality and discuss both parenteral fluid requirments and repair.
Resumo:
OBJECTIVE: Psychological states relate to changes in circulating immune cells, but associations with immune cells in peripheral tissues such as macrophages have hardly been investigated. Here, we aimed to implement and validate a method for measuring the microbicidal potential of ex vivo isolated human monocyte-derived macrophages (HMDMs) as an indicator of macrophage activation. METHODS: The method was implemented and validated for two blood sampling procedures (short-term cannula insertion versus long-term catheter insertion) in 79 participants (34 women, 45 men) aged between 18 and 75 years. The method principle is based on the reduction of 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-dis-ulfophenyl)-2H-tetrazolium, monosodium salt (WST-1) by superoxide anions, the first in a series of pathogen-killing reactive oxygen species produced by phorbol myristate acetate-activated HMDM. Cytochrome c reduction and current generation were measured as reference methods for validation purposes. We further evaluated whether depressive symptom severity (Beck Depression Inventory) and chronic stress (Chronic Stress Screening Scale) were associated with macrophage microbicidal potential. RESULTS: The assay induced superoxide anion responses by HMDM in all participants. Assay results depended on blood sampling procedure (cannula versus catheter insertion). Interassay variability as a measure for assay reliability was 10.92% or less. WST-1 reduction scores correlated strongly with results obtained by reference methods (cytochrome c: r = 0.57, p = .026; current generation: r values ≥ 0.47, p values <.033) and with psychological factors (depressive symptom severity: r = 0.35 [cannula insertion] versus r = -0.54 [catheter insertion]; chronic stress: r = 0.36 [cannula insertion]; p values ≤ .047). CONCLUSIONS: Our findings suggest that the implemented in vitro method investigates microbicidal potential of HMDM in a manner that is valid and sensitive to psychological measures.
Resumo:
Electrolyte disorders are common and potentially fatal laboratory findings in emergency patients. Approximately 20 % of patients in the emergency department present with either hyponatremia or hypernatremia. Recently it was shown that disorders of serum sodium are not only an expression of the severity of the underlying disease but independent predictors for the outcome of patients. They directly influence patient daily life by causing not only gait and concentration disturbances but also an increased tendency to fall together with a reduced bone mass. Given these new data it is even more important to detect and adequately correct dysnatremia in patients in the emergency department. Acute, symptomatic dysnatremia should be corrected promptly by use of 3 % NaCl for hyponatremia and 5 % glucose for hypernatremia. A close monitoring of serum sodium concentration is, however, essential in any case of correction of hyponatremia or hypernatremia in order to avoid rapid overcorrection and subsequent complications. A profound knowledge of the mechanisms underlying the development of hyponatremia, e.g. diuretics, syndrome of inappropriate antidiuretic hormone secretion (SIADH), heart failure and cirrhosis of the liver and hypernatremia, e.g. dehydration, infusions, diuretics and osmotic diuresis is essential. The present article describes the epidemiology, etiology and correction of hyponatremia and hypernatremia on the basis of current knowledge with special emphasis on emergency department patients.
Resumo:
Hypertension and chronic kidney disease (CKD) are complex traits representing major global health problems1,2. Multiple genome-wide association studies have identified common variants in the promoter of the UMOD gene3–9, which encodes uromodulin, the major protein secreted in normal urine, that cause independent susceptibility to CKD and hypertension. Despite compelling genetic evidence for the association between UMOD risk variants and disease susceptibility in the general population, the underlying biological mechanism is not understood. Here, we demonstrate that UMOD risk variants increased UMOD expression in vitro and in vivo. Uromodulin overexpression in transgenic mice led to salt-sensitive hypertension and to the presence of age-dependent renal lesions similar to those observed in elderly individuals homozygous for UMOD promoter risk variants. The link between uromodulin and hypertension is due to activation of the renal sodium cotransporter NKCC2. We demonstrated the relevance of this mechanism in humans by showing that pharmacological inhibition of NKCC2 was more effective in lowering blood pressure in hypertensive patients who are homozygous for UMOD promoter risk variants than in other hypertensive patients. Our findings link genetic susceptibility to hypertension and CKD to the level of uromodulin expression and uromodulin’s effect on salt reabsorption in the kidney. These findings point to uromodulin as a therapeutic target for lowering blood pressure and preserving renal function.
Resumo:
Salt transport in the Irminger Current and thus the coupling between eastern and western subpolar North Atlantic plays an important role for climate variability across a wide range of time scales. High-resolution ocean modeling and observations indicate that 5 salinities in the eastern subpolar North Atlantic decrease with enhanced circulation of the North Atlantic subpolar gyre (SPG). This has led to the perception that a stronger SPG also transports less salt westward. In this study, we analyze a regional ocean model and a comprehensive global coupled climate model, and show that a stronger SPG transports more salt in the Irminger Current irrespective of lower salinities in its 10 source region. The additional salt converges in the Labrador Sea and the Irminger Basin by eddy transports, increases surface salinity in the western SPG, and favors more intense deep convection. This is part of a positive feedback mechanism with potentially large implications for climate variability and predictability.
Resumo:
The liquid–vapor interface is difficult to access experimentally but is of interest from a theoretical and applied point of view and has particular importance in atmospheric aerosol chemistry. Here we examine the liquid–vapor interface for mixtures of water, sodium chloride, and formic acid, an abundant chemical in the atmosphere. We compare the results of surface tension and X-ray photoelectron spectroscopy (XPS) measurements over a wide range of formic acid concentrations. Surface tension measurements provide a macroscopic characterization of solutions ranging from 0 to 3 M sodium chloride and from 0 to over 0.5 mole fraction formic acid. Sodium chloride was found to be a weak salting out agent for formic acid with surface excess depending only slightly on salt concentration. In situ XPS provides a complementary molecular level description about the liquid–vapor interface. XPS measurements over an experimental probe depth of 51 Å gave the C 1s to O 1s ratio for both total oxygen and oxygen from water. XPS also provides detailed electronic structure information that is inaccessible by surface tension. Density functional theory calculations were performed to understand the observed shift in C 1s binding energies to lower values with increasing formic acid concentration. Part of the experimental −0.2 eV shift can be assigned to the solution composition changing from predominantly monomers of formic acid to a combination of monomers and dimers; however, the lack of an appropriate reference to calibrate the absolute BE scale at high formic acid mole fraction complicates the interpretation. Our data are consistent with surface tension measurements yielding a significantly more surface sensitive measurement than XPS due to the relatively weak propensity of formic acid for the interface. A simple model allowed us to replicate the XPS results under the assumption that the surface excess was contained in the top four angstroms of solution.