998 resultados para (Bi,Pb)-2212
Resumo:
对于稀土与非稀土所组成的二元复合氧化物的研究国外已有较多的报导。但是,对于稀土和锑的复合氧化物只是近年来才开始有些研究工作。含锑与稀土的多元复合氧化物的报导就更少。本文在我们实验室张静筠等人三元复合氧化物研究的基础上,开展Mo—Sb_2O_5—R_2O_3—R'_2O_3—Bi_2O_3多元体系的研究工作,这对于我国丰产元素稀土和锑的应用以及利用Bi~(3+)的激活与敏化将是有益的。本文按Thornton等人的方法合成了Ba_2BiSbO_6,Ba_2GdSbO_6,按EγΦECEHKO等人的方法合成了M_2RSbO_6 (M = Ba、Sr、Ca, R = La Y)。并以M_2RSbO_6为基质,掺Sm~(3+)、Eu~(3+)、Dy~(3+)、Ho~(3+)、Er~(3+)、Tm~(3+)和Bi~(3+),研究它们的化学组成,晶体结构与发光性能的关系及规律,Bi~(3+)的荧光和敏作用。同时研究了它们的磁学和热学性能。化学组成的分析结果表明,计算的含量与实验测得的含量符合较好,说明化学反应是按化学计量比进行的。通过X-射线粉沫物相分析和晶胞参数的理论计算确定M_2RSbO_6(M = Ba、Sr、R = La、Y、Gd、Bi)复合氧化物是属于立方钙钛太型化合物。空间群为Fm3m,点群为Oh。用计算机计算了Ca_2YSbO_6的晶胞参数并结合荧光光谱分析确定它属于畸变的单斜钙钛矿,空间群为P_(21)。用磁天平测量了样品M_2RSbO_6 (M = Ba、Sr、Ca; R = Gd、Y、Bi)的磁化率。除Ba_2GdSbO_6是顺磁性物质外共余的都是反磁性的物质。按所用原料Sb_2O_5计算的磁化率与测量值符合较好,表明在所研究的M_2RSbO_6化合物中锑是正五价的。用热重热差分析仪测量了样品在反应中的热性能,观察到在化合物形成的过程中所用原料Sb_2O_3大约在520 ℃左右氧化变为Sb_2O_5。除所用原料碳酸盐分解外没有挥发性的物质,这就进一步证明化学组成分析和磁化率测量的结果是正确的。光学测量的结果表明,所有的磷光体随着激活离子浓度的不同其光谱都发生规律性的变化。对于不同Eu~(3+)浓度的Ba_2YSbO_6:Eu~(3+)和Br_2YSbO_6:Eu~(3+), Bi~(3+)体系用254nm激发时均能观察到Eu~(3+)于595nm的尖峰发射。用基质和Bi~(3+)的激发峰325nm激发时,明显地看到敏化剂Bi~(3+)到Eu~(3+)的能量传递,使Eu~(3+)于595nm的发射大大增强,我们认为Bi~(3+)对Eu~(3+)的敏化作用是由于基质和Bi~(3+)的~1S。→ 3P_1的跃迁吸收了激发的能量,然后无辐射弛豫到Eu~(3+)的激发态~5D_0,产生~5D_0 → 7F_1的磁偶极跃迁。对于不同Eu~(3+)浓度的Sr_2YSbO_6:Eu~(3+)和Sr_2YSbO_6:Eu~(3+), Bi~(3+)体系用245nm激发时均能观察到Eu~(3+)于595nm的尖峰发射。用基质和Bi~(3+)的激发峰335nm激发时,观察到基质和Bi~(3+)对Eu~(3+)具有某种能量传递。敏化作用机理与上述的Ba_2YSbO_6:Eu~(3+)和Ba_2YSbO_6:Eu~(3+), Bi~(3+)体系相同。对于不同Eu~(3+)浓度的Ca_2YSbO_6:Eu~(3+)和Ca_2YSbO_6:Eu~(3+), Bi~(3+)体系用396nm激发时,均能观察到Eu~(3+)于613nm很强的尖峰发射。用基质和Bi~(3+)的激发峰313nm激发时,见到Bi~(3+)和基质对Eu~(3+)具有某种能量传递,这种敏化作用主要是由于基质和Bi~(3+)的3P_1 → ~1S_0的400nm的宽带发射和Eu~(3+)的~7F_0 → ~5L_6的396nm的吸收相匹配产生~5L_6→~5D_0→~7F_2的跃迁。通过对激发光谱和荧光光谱的分析给出了Ca_2Y_(0.96)Eu_(0.04)SbO_6的能级图,从实验上可见,Eu~(3+)的发光强烈地依赖于钙钛矿的结构,当Eu~(3+)在空间群为Fm3m 的Ba_2YSbO_6和Sr_2YSbO_6中处于Oh点对称性时,主要是~5D_0 → ~7F_1的磁偶极跃迁。当Eu~(3+)在空间群为P_(21)的单斜钙钛矿中时,主要是~5D_0 → ~7F_2的电偶极跃迁。对于不同掺杂浓度M_2YSbO_6:R~(13+)(M = Ba、Ca; R' = Sm、Dy、Ho、Er、Tm)体系,通过激发和荧光光谱的研究,合理地确定了谱项。发现基质对Sm~(3+)、Dy~(3+)、Ho~(3+)具有敏化作用。对不同Bi~(3+)浓度的Ca_2YSbO_6:Bi~(3+),由激发和荧光光谱可见Bi~(3+)具有二个激发带,第一激发带位于240nm处相当于~1S_0 → ~1P_1的跃迁,第二激发带位于315nm处相当于~1S_0 → ~3P_1的跃迁。有一个很强的兰紫色发射位于400nm处相当于~3P_1 →~1S_0的跃迁。
Resumo:
为了深入研究丙烯选择氧化和氨氧化剂的作用机理。探索不同金属离子的催化作用,催化剂的结构、性质与活性的关系。我们应用共沉淀方法制备了α-钼酸铋,γ-钼酸铋,Bi_3(FeO_4)(MoD_4)_2土业催化剂Mo_(12)BiFe_3Ni_(2.5)Co_(4.5)Pa_5K_(0.107)O_(55)+50%SiO_2,Bi_3FexM_(0.3-x)O_n催化剂体系,浸Bi钼酸铁体系,M_7~(24)Fe_3BiMo_(12)O_(96)(M~(2+) = Mg, Ni, Co, Cu, Pb, Sr)体系的催化剂。测定了这些催化剂的X射线衍射数据、IR,Raman,ESCA,Mossbauer等,研究了这些催化剂的结构、组成、物理化学性质。同时考察了这些催化剂对丙烯氨氧化的催化作用,并试图把催化剂的性质与催化作用关联起来。同时,为了进一步研究催化剂的表面活性相、活性中心的性质,丙烯氧化和氨氧化中的表面中间体的形式和键合情况。我们使用了丙烯、丙烯醇、氨、丙烯胺作为分子探针,研究了这些分子的程序升温脱附情况,以便了解钼铋催化剂的催化作用。浸Bi钼酸铁研究说明,Bi可能是丙烯α氢脱除的活性中心。Mo-O多面体起丙烯吸附、氧或氮插入活性中心的作用。由于钼酸铁晶格的敞开性和弹性。Bi进入了钼酸铁晶格,形成了Bi嵌钼酸铁的表层结构。成为对丙烯选择氧化的催化剂。钼酸铁由于Fe~(3+)的部分填充d电子结构,是一种使双键断裂,进行深度氧化的催化剂。Bi进入Fe_2(MoO_4)_3表层的缺陷,形成Bi = o-O-Mo = o对,使深度氧化中心变成选择氧化中心。Bi_3Fe_xMo_(3-x)O_n体系中,随着Fe的加入,形成了Mo-Bi-Fe三元化合物。该化合物比Bi_2Mo_2O_9具有更高的活性和选择性。晶格中Fe~(3+)的存在,将促进P型电导,这时Fe~(3+)相当于受主杂质杂质,降低了费米能级。而丙烯的吸附活化形成烯丙基是一给电子过程。因此,Fe~(3+)的存在将加快丙烯活化吸附的速度,也就加速了反应。并且,Fe~(3+)/Fe~(2+)的氧化还原对存在,能快速接受Mo或Bi上的电子,保持Mo和Bi的氧化态,有利于反应的进行。同时,Fe~(2+)具有较低的电负性,能起到提供氧吸附、进行再氧化的中心的作用。把催化剂的电子提供给氧,同时把晶格氧输送到还原位上。这种多功能作用的协合,可能是Mo-Bi-Fe体系高活性和高选择性的原因。丙烯吸附中,所有催化剂都存在可连吸附中心和不可逆吸附中心。丙烯的吸附是活化解离吸附。不同催化剂的丙烯和丙烯醛的脱附情况相似。说明不同催化剂的丙烯吸附中心,丙烯醛或(丙烯腈)生成中心可能是相同的。丙烯醛脱附峰的存在,说明催化剂的晶格氧离子确能与丙烯作用生成丙烯醛。丙烯醇和丙烯胺的脱附说明,都存在可逆吸附和不可逆吸附两种类型。它们在催化剂表面的吸附是活化解离化学吸附,其吸附中心可能与丙烯选择氧化和氨氧化中的丙烯醛(或丙烯腈)生成中心相同。丙烯氧化反应中,烯丙基氧插入形成的Q-O键合物中间体,与丙烯醇解离吸附形成的表面吸附物种(Mo-O-CH_2-CH = CH_2)相同。同样,丙烯胺解离吸附形成的表面物种(Mo-NH-CH_2-CH = CH_2),可能与丙烯氨氧化中烯丙基Q-NH键合而成的中间体相同。这两种中间体,对选择性生成丙烯醛和丙烯腈起决定作用。NH_3的吸附存在两种可逆吸附类型。而不可逆吸附在高温区以N_2和H_2O脱附出来。NH_3在催化剂的解离吸附形成NH_2基。温度升高继续脱氢形成NH基。该NH基会插入烯丙基,形成(Mo-NH-CH_2-CH = CH_2)中间体,其继续反应形成丙烯腈。
Resumo:
锗与人体的生理活动密切相关,有关资料表明,有机锗化合物对人体的多种疾病,尤其是癌症具有高效、低毒的特点,从而使锗化合物的合成,药理研究成为一个新兴的、引人注目的领域。在本论文中,我们建立了一套锗及其形态分析的新方法,并提出了氢化物发生一银语胶光度法连续测定砷和锗、微量硒测定的新方法,探讨了锗、砷、硒三种氢化物的性质及测定锗,砷时其它石生成氢化物元素的干扰和消除方法。本论文的工作分为以下六部分。一、微量锗测定新方法的建立微量锗的测定,从目前资料来看,主要采用苯基荧光酮一表面活性剂、碱性染料-锗钼杂多酸和氢化物发生-原子吸收连用的方法,对于使用显色剂的各种测定手段,都不同程度的存在着选择、重现性差及操作繁琐的缺点;原子吸收测定锗,原子化效率不高,条件要求较为苛刻。所以,我们的工作旨在寻求一个简便、快速、灵敏度高、选择性好的测定锗的新方法。通过试验,我们采用硼氢化钾将溶液中锗以锗化氢的形式发生出来,用硝酸银、有机溶剂,动物胶的混合溶液吸收,锗化氢与硝酸银溶液反应形成黄色的溶胶显色,在425nm处有最大吸收,成功的建立了测定微量锗的新方法。新的方法将锗化氢的发生、吸收、富集、显色在一个系统中同时进行,达到简便、快速的要求,灵敏度高,表观摩尔吸光系数为7.32 * 10~4 l·mol~(-1)·cm~(-1),对岩矿、土壤等固体样品的测定,检测下限为0.05ppm,对水样的测定,检测限可达2PPb,通过对三十多种离子的干扰试验表明,绝大部分离子均不干扰锗的测定,选择性好,对水、土壤、植物样品,煤飞灰等样品进行测定,取得令人满意的结果。二、锗的形态分析方法的研究锗的形态分析还未见有作者进行系统研究,这方面的工作几乎还是一个空白。以医学界人士研究发现,在促进人体的新陈代谢,治疗各种疾病上,有机形态的锗起着更加积极的作用,随着锗的有机药物的合成,对药物中的锗进行形态分析就愈来愈重要。我们在试验中发现,热的稀硝酸介有效的将无机形态锗以样品中浸取出来,并在确定的柠檬酸铵(PH5.5)的缓冲液中被硼氢化钾还原至GeH_4,用氢化物发生-银溶胶光度法测定。同时,有机形态锗则在此稀硝酸中保持稳定,且在所采用的氢化物发生条件下,不能被还原至 GeH_4,故不在两种形态锗共存时,进行无机锗的测定,利用湿法消解,使样品中锗全部转化为无机形态,测定锗的总量,差减法而可求得有机锗的含量。本文对固体,液体样品中锗的形态分析分别进行了讨论,对固体样品的浸取条件进行了详细研究。用该方法进行锗的形态分析,不仅灵敏度高,选择性好,而且具有较高的重视性和稳定性。对无机形态锗和锗总量测定的回收率分别为95-105%。90-100%,并成功的对某些药物,水及合成样进行了分析。三、含锗样品消解条件的研究本文研究了多种湿法消解体系,对含锗样品消解过程中存在着的回收率低,稳定性差的原因做了较为详细的探讨,经过试验证明,在常用的湿法消解体系中,加入氢氟酸的作用并不是为了防止锗的挥发,常用的酸HNO_3, H_2SO_4, HClO_4在消解过程中并不会引起锗的挥发损失,引起的回收率降低的主要原因是硅胶的吸附,而加入F~-使回收率提高是因为F~-使硅胶以SiF_4形式挥发而使锗的吸附得以解析所改。对生物样品的消解,本文提出了HNO_3-HClO_4-NH_4F-(NH_4)_2MoO_4新的消解体系。体系对样品消解完全、回收率高(90-105%),对各种加标样品及实际样品消解测定,稳定性,准确性均令人满意。四、氢化物发生一银溶胶光度法连续测定砷和锗锗砷同属可生成氢化物元素,将它们在一个系统中同时发生出来,吸收显色测定,将使实际样品的分析更加简便,快速。为同时发生两种氢化物,我们选择了各种强酸、弱酸、缓冲液作为反应介质,以柠檬酸铵缓冲液和草酸铵介质为最佳,并确定了介质的数值酸度PH 5.5-6.0。在这种条件下,锗砷可被充分发生出来。利用A_3H_3 GeH_4的极性及还原能力的差异,使气体通过两支串镁的,盛有不同硝酸银溶液的吸收管,先得A_3H_3吸收显色,GeH_4不被吸收而导入第二个吸收管吸收,达到两种氢化物分别吸收、两个元素连续测定的目的。本方法操作简便,反应快速、灵敏度高,锗砷标准曲线参数分别为Ge {r = 0.9997 a = 0.0047 b = 0.207 A/μg As { r = 0.9996 a = -0.0011 b =0.309A/μg对水样的测定,锗,砷检测限分别达到2PPb和1PPb。利用这种方法,成功的进行了GSD,GRD,煤飞灰等复杂样品及水样的分析。五、氢化物发生-硒化银溶胶法测定微量硒硒做为人体必需的微量元素之一,既参与人体的各种代谢,必不可少,摄入过量则又有害,硒的生物学效应及环境毒性方面研究的迅速进展,要求人们简便快速、准确灵敏的进行种样品中微量硒的分析。本文在0.2NH_2SO_4-2%硒石酸介质中,用硼氢化钾宁将Se(IV)以H_2Se形式发生出来,用硝酸银-阿拉伯胶溶液吸收,形成硒化银溶胶显色,建立了硒化氢发生-硒化银溶胶光度法测定微量硒的新方法,本方法不仅反应快速、操作方便,而且具有较高灵敏度和选择性,显色后的溶液在 246nm处有最大吸收,检测限为0.04PPM。本文探讨了硒化氢发生、吸收显色的各种影响因素,确定了最佳条件。用于进行硒酵母、人发、米、尿等样品中微量硒的测定,并且与其它方法所得结果进行了对照,结果完全一致。六、测定锗,砷,硒时共价氢化物元素的干扰及消除可生成氢化物元素之间的干扰是采用氢化物发生技术分离测定元素的主要干扰因素之一,由于各元素性度接近,这种干扰往往很难消除。许多文献却提到这种干扰问题,但对消除干扰却缺乏有效方法,这就使复杂样品中这些元素的测定遇到很大困难。本文采用氢化物发生-银溶胶光度法对锗,砷,硒三种元素氢化物的性质进行了试验,探讨了它们在酸性,中性,碱性水溶液中的稳定性及与变价离子、氧化剂反应的能力,得出:三种氢化物的稳定性为GeH_4 > A_3H_3 > H_2Se,而其还原能力则与上述顺序正好相反。基于氢化物的稳定性及还原能力的差异,我们提出了测定锗,砷时消除其它共价氢化物元素干扰的简便,有效方法,对锗的测定,采用U形管中填充浸润KIO_3酸性溶液脱脂棉的方法,发生出来的气体通过U形管,可方便的消除其它七种共价氢化物元素的干扰,具有高效性。测定微克锗, As~(5+), As~(3+), Sb~(3+) Pb~(2+), Bi~(4+), Sn~(2+)的允许量可达毫克级,百倍于Ge(IV)的Te~(4+), Se~(4+)也不产生干扰。对砷的测定,则采用U形管中填充浸润乙醇胺的DMF混合液的脱脂棉的方法消除干扰,1000-5000倍量的Pb~(3+), Bi~(3+), Sn~(4+), Sn~(2+), Sb~(3+), 15-100倍的Ge~(4+), Se~(4+), Te~(4+)不干扰砷的测定。
Resumo:
本论文包括两部分内容。第一部分为“Cu(III)及相关化合物的合成和性质的研究”;第二部分为“稀土复合氟化物的电性、氧敏和氢敏性质”。第一部分的主要内容有:1.制备了Na_4H[Cu(H_2TeO_6)_2]·17H_2O和Na_4K[Cu(HIO_6)_2]·12H_2O的Cu(III)单晶配合物。2.在比较相应的Cu(II)化合物的条件下,详细地研究了这二个Cu(III)配合物的电子光谱和Cu2p光电子能谱,由于价态升高,场强参数增大,Cu(III)化合物的d-d跃迁相对于Cu(II)化合物d-d跃迁,发生“蓝移”。3.成功地实现了用O_3和电化学方法对强碱溶液中Cu(II)配合物的氧化,获得了二个新的Cu(III)固态配合物Ba_4K[Cu(H_2TeO_6)_2] (OH)_4·6H_2O和Ba_3K[Cu(HIO_6)_2] (KOH)_(0.5)(OH)_2·8H_2O利用化学分析、磁学性质、电子光谱和Cu2p XPS,对这二个化合物进行了表征。4.对BaCuO_(2.5)的合成、电学性质、磁学性质、Cu(III) ESR和Cu2p XPS进行了研究。5.以Na_4K[Cu(HIO_6)_2]·12H_2O和BaCuO_(2.5)为参照物,用电子光谱和Cu2p XPS,确认了YBa_2Cu_3O_(7-5)中的高价态的铜。6.考察了以Cu(III)化合物作为Cu部分原料所合成的YBCO系超导材料的电学性质。第二部分的主要内容有:1.测试了元件“BiF_3(Bi)/Ce_(0.95)Ca_(0.05)F_(2.95)/Pt”的氧敏、氢敏等性能。从室温到130 ℃,元件的氧敏机理为“双电子反应”,电动势(EMF)与氧分压遵循Nernst关系式。室温时,元件对空气中100Pa或1000Pa氢气的响应时间仅为15秒或短于5秒;氢分压在16Pa~1000Pa范围内,EMF与氢分压的对数呈线性关系,斜率为-116mV/decade, 敏感机理表现为“混合电极电势”。元件具有良好的氢敏性能,并有一定的选择性。2.合成并测试了La_(1-x)Pb_xF_(3-x)(X = 0.00 ~ 0.15)的电导率,La_(0.95)Pb_(0.05)F_(2.95)的电导率最高,比LaF_3高约一个数量级。以La_(0.95)Pb_(0.05)F_(2.95)为固体电解质材料,Pd或Pt为敏感电极,BiF_3(Bi)或PbF_2(Pb)为参比电极,制成了四个元件。其中,“BiF_3(Bi)/La_(0.95)Pb_(0.05)F_(2.95)/Pt”具有最好的氧敏、氢敏性能。从室温到150 ℃,元件的EMF与1gPo_2附合Nernst关系式。150 ℃时,元件对氧气的响应时间仅为80秒。室温下,元件对空气中100Pa或1000Pa氢气的响应时间仅为75秒或15秒,元件的电动势EMF与氢分压的关系可表示为“E=E_o-96lgP_(H2)(mV)”。元件对CO有较差的敏感性能,而对空气中甲烷、乙烷或乙炔(≤1000Pa)不具敏感性能。3.合成并测试了Ln_(1-x)Pb_xF_(3-x)(Ln=Ce、Pr、Nd和Gd、Dy、Ho、Yb)的电性。前四个系列为离子导体材料,后三个系列可能为P型半导体。随着Ln原子序数增大,LnF_3导电性能变差;La~(3+)、Ce~(3+)、Pr~(3+)、Nd~(3+)与Pb~(2+)离子半径差异较小,LnF_3和PbF_2可以形成固溶体;而Gd~(3+)、Dy~(3+)、Ho~(3+)、Yb~(3+)与Pb~(2+)离子半径差异较大,LnF_3和PbF_2难以形成固溶体。
Resumo:
For large size- and chemical-mismatched isovalent semiconductor alloys, such as N and Bi substitution on As sites in GaAs, isovalent defect levels or defect bands are introduced. The evolution of the defect states as a function of the alloy concentration is usually described by the popular phenomenological band anticrossing (BAC) model. Using first-principles band-structure calculations we show that at the impurity limit the N-(Bi)-induced impurity level is above (below) the conduction- (valence-) band edge of GaAs. These trends reverse at high concentration, i.e., the conduction-band edge of GaAs1-xNx becomes an N-derived state and the valence-band edge of GaAs1-xBix becomes a Bi-derived state, as expected from their band characters. We show that this band crossing phenomenon cannot be described by the popular BAC model but can be naturally explained by a simple band broadening picture.
Resumo:
Natural surface coatings sampled (NSCSs) from the surface of shingles and surficial sediments (SSs) in the Songhua River, China were employed to investigate the similarities and difference in fractions of heavy metals (Fe, Mn, Zn, Cu, Pb, and Cd) between NSCSs and SSs using the modified sequential extraction procedure (MSEP). The results show that the differences between NSCSs and SSs in Fe fractions were insignificant and Fe was dominantly present as residual phase (76.22% for NSCSs and 80.88% for SSs) and Fe-oxides phase (20.33% for NSCSs and 16.15% for SSs). Significant variation of Mn distribution patterns between NSCSs and SSs was observed with Mn in NSCSs mainly present in Mn-oxides phase (48.27%) and that in SSs present as residual phase (45.44%). Zn, Cu, Pb and Cd were found dominantly in residual fractions (>48%), and next in solid oxides/hydroxides for Zn, Pb and Cd and in easily oxidizable solids/compounds form for Cu, respectively. The heavy metal distribution pattern implied that Fe/Mn oxides both in NSCSs and SSs were more important sinks for binding and adsorption of Zn, Pb and Cd than organic matter (OM), and inversely, higher affinity of Cu to OM than Fe/Mn oxides in NSCSs and SSs was obtained. Meanwhile, it was found that the distributions of heavy metals in NSCSs and SSs were similar to each other and the pseudo-total concentrations of Zn, Cu, Pb and Cd in NSCSs were greater than those in SSs, highlighting the more importance for NSCSs than SSs in controlling behaviours of heavy metals in aquatic environments.
Resumo:
本文运用土柱淋溶试验,研究了不同条件下Cd、Pb、Cu、Zn和As等五种重金属元素在草甸棕壤中垂直迁移的规律。试验表明,一般情况下各重金属元素向下迁移的深度不超过10cm,绝大部分还是滞留在表层污染土中,因此在本试验条件下不会因淋溶迁移而导致地下水的污染。从不同重金属元素的迁移情况来看,Cd和Zn的迁移能力较强,Cu、Pb和As的迁移能力较弱。随着土壤pH值降低,Cd、Pb、Cu和Zn的迁移加强,As的迁移减弱。加大淋溶水量,能促进各种重金属离子随土壤水溶液的迁移。在供试浓度下,各重金属元素对水稻的生长没有危害,但对紫花苜蓿的生长却有影响,水稻籽实(或糙米)和紫花苜蓿茎叶中各重金属元素的含量都有增加,甚至超标。土壤施用石灰,能抑制各重金属元素在草甸棕壤中的迁移及被作物的吸收,是降低土壤重金属污染危害的一个有效措施。但是利用施加腐殖酸来防治土壤重金属污染往往会因造成土壤pH值下降、增加某些重金属的可溶性而遭失败。试验还表明,Cd、Pb、Cu和Zn的迁移在酸雨条件下会加剧,但As的迁移仅在弱酸性酸雨条件下增加,强酸性酸雨反而抑制As的迁移。