917 resultados para wind turbine control
Resumo:
Exploiting wind-energy is one possible way to ex- tend flight duration for Unmanned Arial Vehicles. Wind-energy can also be used to minimise energy consumption for a planned path. In this paper, we consider uncertain time-varying wind fields and plan a path through them. A Gaussian distribution is used to determine uncertainty in the Time-varying wind fields. We use Markov Decision Process to plan a path based upon the uncertainty of Gaussian distribution. Simulation results that compare the direct line of flight between start and target point and our planned path for energy consumption and time of travel are presented. The result is a robust path using the most visited cell while sampling the Gaussian distribution of the wind field in each cell.
Small-signal stability analysis of a DFIG-based wind power system under different modes of operation
Resumo:
This paper focuses on the super/subsynchronous operation of the doubly fed induction generator (DFIG) system. The impact of a damping controller on the different modes of operation for the DFIG-based wind generation system is investigated. The coordinated tuning of the damping controller to enhance the damping of the oscillatory modes using bacteria foraging technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system. The robustness issue of the damping controller is also investigated.
Resumo:
This paper proposes a nonlinear H_infinity controller for stabilization of velocities, attitudes and angular rates of a fixed-wing unmanned aerial vehicle (UAV) in a windy environment. The suggested controller aims to achieve a steady-state flight condition in the presence of wind gusts such that the host UAV can be maneuvered to avoid collision with other UAVs during cruise flight with safety guarantees. This paper begins with building a proper model capturing flight aerodynamics of UAVs. Then a nonlinear controller is developed with gust attenuation and rapid response properties. Simulations are conducted for the Shadow UAV to verify performance of the proposed con- troller. Comparative studies with the proportional-integral-derivative (PID) controllers demonstrate that the proposed controller exhibits great performance improvement in a gusty environment, making it suitable for integration into the design of flight control systems for cruise flight of UAVs.
Resumo:
This study presents a disturbance attenuation controller for horizontal position stabilisation for hover and automatic landings of a rotary-wing unmanned aerial vehicle (RUAV) operating close to the landing deck in rough seas. Based on a helicopter model representing aerodynamics during the landing phase, a non-linear state feedback H∞ controller is designed to achieve rapid horizontal position tracking in a gusty environment. Practical constraints including flapping dynamics, servo dynamics and time lag effect are considered. A high-fidelity closed-loop simulation using parameters of the Vario XLC gas-turbine helicopter verifies performance of the proposed horizontal position controller. The proposed controller not only increases the disturbance attenuation capability of the RUAV, but also enables rapid position response when gusts occur. Comparative studies show that the H∞ controller exhibits performance improvement and can be applied to ship/RUAV landing systems.
Resumo:
Buffeting response of a cable-stayed bridge under construction is investigated through wind tunnel tests and numerical simulations. Two configurations of the erection stage have been considered and compared in terms of dynamic response and internal forces using the results of the experimental aeroelastic models. Moreover the results of a numerical model able to simulate the simultaneous effects of vortex shedding from tower and aeroelastic response of the deck are compared to the wind tunnel ones.
Resumo:
Wind power is one of the world's major renewable energy sources, and its utilization provides an important contribution in helping solve the energy problems of many countries. After nearly 40 years of development, China's wind power industry now not only manufactures its own massive six MW turbines but also has the largest capacity in the world with a national output of 50 million MW•h in 2010 and set to rise by eight times of that amount by 2020. This paper investigates this development route by analyzing relevant academic literature, statistics, laws and regulations, policies and research and industry reports. The main drivers of the development in the industry are identified as technologies, turbines, wind farm construction, pricing mechanism and government support systems, each of which is also divided into different stages with distinctive features. A systematic review of these aspects provides academics and practitioners with a better understanding of the history of the wind power industry in China and reasons for its rapid development with a view to enhancing progress in wind power development both in China and the world generally.
Resumo:
In this paper, we address the control design problem of positioning of over-actuated underwater vehicles. The proposed design is based on a control architecture with combined position and velocity loops and a control tuning method based on the decoupled models. We derive analytical tuning rules based on requirements of closed-loop stability, positioning performance, and the vehicle velocity dynamic characteristics. The vehicle modelling is considered from force to motion with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. This approach makes the control tuning independent of the characteristics of the force actuators and provides the basis for control reconfiguration in the presence of actuator failure. We propose an anti-wind-up implementation of the controller, which ensures that the constraints related to actuation capacity are not violated. This approach simplifies the control allocation problem since the actuator constraints are mapped into generalised force constraints.
Resumo:
A statistical approach is used in the design of a battery-supercapacitor energy storage system for a wind farm. The design exploits the technical merits of the two energy storage mediums, in terms of the differences in their specific power and energy densities, and their ability to accommodate different rates of change in the charging/discharging powers. By treating the input wind power as random and using a proposed coordinated power flows control strategy for the battery and the supercapacitor, the approach evaluates the energy storage capacities, the corresponding expected life cycle cost/year of the storage mediums, and the expected cost/year of unmet power dispatch. A computational procedure is then developed for the design of a least-cost/year hybrid energy storage system to realize wind power dispatch at a specified confidence level.
Resumo:
This paper presents a capacitor-clamped three-level inverter-based supercapacitor direct integration scheme for wind energy conversion systems. The idea is to increase the capacitance of clamping capacitors with the use of supercapacitors and allow their voltage to vary within a defined range. Even though this unique approach eliminates the need of interfacing dc-dc converters for supercapacitors, the variable voltage operation brings about several challenges. The uneven distribution of space vectors is the major modulation challenge. A space vector modulation method is proposed in this paper to address this issue and to generate undistorted currents even in the presence of dynamic changes in supercapacitor voltages. A supercapacitor voltage equalization algorithm is also presented. Moreover, control strategies of the proposed system are discussed in detail. Simulation and experimental results are presented to verify the efficacy of the proposed system in suppressing short-term wind power fluctuations.
Resumo:
Modulation and control of a cascade multilevel static synchronous compensator (STATCOM) configuration to improve the quality of voltage generated by wind power systems are presented. The proposed STATCOM configuration needs only four dc-link capacitors and 24 switches to synthesise nine-level operation. In addition to that, switching losses are further reduced by splitting the voltage source inverter of the STATCOM into two units called the `bulk inverter` and the `conditioning inverter`. The high-power bulk inverter is operated at low frequency whereas the low-power conditioning inverter is operated at high frequency to suppress harmonics produced by the bulk inverter. Fluctuations at the point of common coupling voltage, caused by sudden wind changes, are suppressed by controlling reactive power of the STATCOM. Simulation and experimental results are presented to verify the efficacy of the proposed modulation and control techniques used in the STATCOM.
Resumo:
This paper presents a modulation and controller design method for paralleled Z-source inverter systems applicable for alternative energy sources like solar cells, fuel cells, or variablespeed wind turbines with front-end diode rectifiers. A modulation scheme is designed based on simple shoot-through principle with interleaved carriers to give enhanced ripple reduction in the system. Subsequently, a control method is proposed to equalize the amount of power injected by the inverters in the grid-connected mode and also to provide reliable supply to sensitive loads onsite in the islanding mode. The modulation and controlling methods are proposed to have modular independence so that redundancy, maintainability, and improved reliability of supply can be achieved. The performance of the proposed paralleled Z-source inverter configuration is validated with simulations carried out using Matlab/Simulink/Powersim. Moreover, a prototype is built in the laboratory to obtain the experimental verifications.
Resumo:
A Three-Phase Nine-Switch Converter (NSC) topology for Doubly Fed Induction Generator in wind energy generation is proposed in this paper. This converter topology was used in various applications such as Hybrid Electric Vehicles and Uninterruptable Power Supplies. In this paper, Nine-Switch Converter is introduced in Doubly Fed Induction Generator in renewable energy application for the first time. It replaces the conventional Back-to-Back Pulse Width Modulated voltage source converter (VSC) which composed of twelve switches in many DFIG applications. Reduction in number of switches is the most beneficial in terms of cost and power switching losses. The operation principle of Nine-Switch Converter using SPWM method is discussed. The resulting NSC performance of rotor side current control, active power and reactive control are compared with Back-to Back voltage source converter performance. DC link voltage regulation using front end converter is also presented. Finally the simulation results of DFIG performances using NSC and Back-to-Back VSC are analyzed and compared.
Resumo:
This paper presents a grid-side inverter based supercapacitor direct integration scheme for wind power systems. The inverter used in this study consists of a conventional two-level inverter and three H-bridge modules. Three supercapacitor banks are directly connected to the dc-links of H-bridge modules. This approach eliminates the need for interfacing dc-dc converters and thus considerably improves the overall efficiency. However, for the maximum utilization of super capacitors their voltages should be allowed to vary. As a result of this variable voltage space vectors of the hybrid inverter get distributed unevenly. To handle this issue, a modified PWM method and a space vector modulation method are proposed and they can generate undistorted current even in the presence of unevenly distributed space vectors. A supercapacitor voltage balancing method is also presented in this paper. Simulation results are presented to validate the efficacy of the proposed scheme, modulation methods and control techniques.
Resumo:
This paper presents a novel concept of Energy Storage System (ESS) interfacing with the grid side inverter in wind energy conversion systems. The inverter system used here is formed by cascading a 2-level inverter and a three level inverter through a coupling transformer. The constituent inverters are named as the “main inverter” and the “auxiliary inverter” respectively. The main inverter is connected with the rectified output of the wind generator while the auxiliary inverter is attached to a Battery Energy Storage System (BESS). The BESS ensures constant power dispatch to the grid irrespective of change in wind condition. Furthermore, this unique combination of BESS and inverter eliminates the need of additional dc-dc converters. Novel modulation and control techniques are proposed to address the problem of non-integer, dynamically-changing dc-link voltage ratio, which is due to random wind changes. Strategies used to handle auxiliary inverter dc-link voltage imbalances and controllers used to charge batteries at different rates are explained in detail. Simulation results are presented to verify the efficacy of the proposed modulation and control techniques in suppressing random wind power fluctuations.
Resumo:
This paper explores the possibility of using grid side inverter as an interface to connect energy storage systems. A dual inverter system, formed by cascading two 2-level inverters through a coupling transformer, is used as the testing model. The inverters are named as “main inverter” and “auxiliary inverter”. The main inverter is powered by the rectified output of the wind generator while the auxiliary inverter is attached to a Battery Energy Storage System (BESS). If there is a surplus of wind power compared to the demand, then that would be stored in BESS while if there is a deficit in wind power then the demand will be satisfied by supplying power from the BESS. This enables constant power dispatch to the grid irrespective of wind changes. Novel modulation and control techniques are proposed to address the problem of non-integer, dynamically-varying dc-link voltage ratio, which is due to random wind changes. Furthermore, a maximum power tracking controller for this unique system is explained in detail. Simulation results verify the efficacy of proposed modulation and control techniques in suppressing random power fluctuations.