990 resultados para walking capacity
Resumo:
Digital Image
Resumo:
Understanding the effects of different types and quality of data on bioclimatic modeling predictions is vital to ascertaining the value of existing models, and to improving future models. Bioclimatic models were constructed using the CLIMEX program, using different data types – seasonal dynamics, geographic (overseas) distribution, and a combination of the two – for two biological control agents for the major weed Lantana camara L. in Australia. The models for one agent, Teleonemia scrupulosa Stål (Hemiptera:Tingidae) were based on a higher quality and quantity of data than the models for the other agent, Octotoma scabripennis Guérin-Méneville (Coleoptera: Chrysomelidae). Predictions of the geographic distribution for Australia showed that T. scrupulosa models exhibited greater accuracy with a progressive improvement from seasonal dynamics data, to the model based on overseas distribution, and finally the model combining the two data types. In contrast, O. scabripennis models were of low accuracy, and showed no clear trends across the various model types. These case studies demonstrate the importance of high quality data for developing models, and of supplementing distributional data with species seasonal dynamics data wherever possible. Seasonal dynamics data allows the modeller to focus on the species response to climatic trends, while distributional data enables easier fitting of stress parameters by restricting the species envelope to the described distribution. It is apparent that CLIMEX models based on low quality seasonal dynamics data, together with a small quantity of distributional data, are of minimal value in predicting the spatial extent of species distribution.
Resumo:
Steel roofs made of thin cold-formed steel roof claddings and battens are widely used in low-rise residential and industrial buildings all around the world. However, they suffer from premature localised pull-through failures in the batten to rafter connections during high wind events. A recent study proposed a suitable design equation for the pull-through failures of thin steel roof battens. However, it was limited to static wind uplift loading. In contrast, most cyclone/storm events produce cyclic wind uplift forces on roofs for a significantly long period, thus causing premature fatigue pull-through failures at lower loads. Therefore, a series of constant amplitude cyclic load tests was conducted on small and full scale roof panels made of a commonly used industrial roof batten to develop their S-N curves. A series of multi-level cyclic tests, including the recently introduced low-high-low (LHL) fatigue loading test, was also undertaken to simulate a design cyclone. Using the S-N curves, the static pull-through design capacity equation was modified to include the effects of fatigue. Applicability of Miner’s rule was evaluated in order to predict the fatigue damage caused by multi-level cyclic tests such as the LHL test, and suitable modifications were made. The combined use of the modified Miner’s law and the S-N curve of roof battens will allow a conservative estimation of the fatigue design capacity of roof battens without conducting the LHL tests simulating a design cyclone. This paper presents the details of this study, and the results.
Resumo:
In the case of an ac cable, power transmission is limited by the length of the cable due to the capacitive reactive current component. It is well known that high-voltage direct current (HVDC) cables do not have such limitations. However, insulation-related thermal problems pose a limitation on the power capability of HVDC cables. The author presents a viable theoretical development, a logical extension to Whitehead's theory on thermal limitations of the insulation. The computation of the maximum power-carrying capability of HVDC cables subject to limits on the maximum operable temperature of the insulation is presented. The limitation on the power-carrying capability is closely associated with the electrothermal insulation failure. The effect of environmental interaction by way of external thermal resistance, an important aspect, is also considered in the formulations. The Lagrange multiplier method has been used to handle the ensuing optimization problem. The theory is based on an accepted theory of thermal breakdown in insulation and is an important and a coherent extension of great significance.
Resumo:
Seeds in the field experience wet-dry cycling that is akin to the well-studied commercial process of seed priming in which seeds are hydrated and then re-dried to standardise their germination characteristics. To investigate whether the persistence (defined as in situ longevity) and antioxidant capacity of seeds are influenced by wet-dry cycling, seeds of the global agronomic weed Avena sterilis ssp. ludoviciana were subjected to (1) controlled ageing at 60% relative humidity and 53.5°C for 31 days, (2) controlled ageing then priming, or (3) ageing in the field in three soils for 21 months. Changes in seed viability (total germination), mean germination time, seedling vigour (mean seedling length), and the concentrations of the glutathione (GSH) / glutathione disulphide (GSSG) redox couple were recorded over time. As controlled-aged seeds lost viability, GSH levels declined and the relative proportion of GSSG contributing to total glutathione increased, indicative of a failing antioxidant capacity. Subjecting seeds that were aged under controlled conditions to a wet-dry cycle (to −1 MPa) prevented viability loss and increased GSH levels. Field-aged seeds that underwent numerous wet-dry cycles due to natural rainfall maintained high viability and high GSH levels. Thus wet-dry cycles in the field may enhance seed longevity and persistence coincident with re-synthesis of protective compounds such as GSH.
Resumo:
Digital Image
Resumo:
A review of factors that may impact on the capacity of beef cattle females, grazing semi-extensive to extensive pastures in northern Australia, to conceive, maintain a pregnancy and wean a calf was conducted. Pregnancy and weaning rates have generally been used to measure the reproductive performance of herds. However, this review recognises that reproductive efficiency and the general measures associated with it more effectively describe the economic performance of beef cattle enterprises. More specifically, reproductive efficiency is influenced by (1) pregnancy rate which is influenced by (i) age at puberty; (ii) duration of post-partum anoestrus; (iii) fertilisation failure and (iv) embryo survival; while (2) weight by number of calves per breeding female retained for mating is influenced by (i) cow survival; (ii) foetal survival; and (iii) calf survival; and (3) overall lifetime calf weight weaned per mating. These measures of reproductive efficiency are discussed in depth. Further, a range of infectious and non-infectious factors, namely, environmental, physiological, breed and genetic factors and their impact on these stages of the reproductive cycle are investigated and implications for the northern Australian beef industry are discussed. Finally, conclusions and recommendations to minimise reproductive inefficiencies based on current knowledge are presented.
Resumo:
Digital Image
Resumo:
The Davoser Hochschulkurse took place for the first time in 1928. Mainly university teachers from Germany, France, Switzerland (perhaps elsewhere) offered lectures to students recovering from tuberculosis at the health resort in the Swiss mountains. The lecturers were accommodated at the Grand Hotel Curhaus, where the lectures also took place.
Resumo:
Digital Image
Resumo:
Digital Image
Resumo:
Digital Image