795 resultados para undergraduate mathematics students
Resumo:
Psychology, nursing and medicine are undergraduate degrees that require students to attain a level of numerical competence for graduation. Yet, the numeracy aspect of these courses is often actively disliked and poorly performed. This study's aim was to identify what factors most strongly predict performance in such courses. Three hundred and twenty-five undergraduate students from these three disciplines were given measures of numeracy performance, maths anxiety, maths attitudes and various demographic and educational variables. From these data three separate path analysis models were formed, showing the predictive effects of affective, demographic and educational variables on numeracy performance. Maths anxiety was the strongest affective predictor for psychology and nursing students, with motivation being more important for medical students. Across participant groups, pre-university maths qualifications were the strongest demographic/educational predictor of performance. The results can be used to suggest ways to improve performance in students having difficulty with numeracy-based modules.
Resumo:
There is an increasing recognition of the need to improve interprofessional relationships within clinical practice (Midwifery 2020, 2010). Evidence supports the assertion that healthcare professionals who are able to communicate and work effectively together and who have a mutual respect and understanding for one another’s roles will provide a higher standard of care (McPherson et al, 2001; Miers et al, 2005; Begley, 2008). The joint Royal College of Obstetrics & Gynaecologists(RCOG) / Royal College of Midwives (RCM) report (2008 Page 8) on clinical learning environment and recruitment recommended that “Inter-professional learning strategies should be introduced and supported at an early stage in the medical and midwifery undergraduate students' experience and continued throughout training.” Providing interprofessional education within a University setting offers an opportunity for a non-threatening learning environment where students can develop confidence and build collaborative working relationships with one another (Saxell et al, 2009).Further research supports the influence of effective team working on increased client satisfaction. Additionally it identifies that the integration of interprofessional learning into a curriculum improves students’ abilities to interact professionally and provides a better understanding of role identification within the workplace than students who have only been exposed to uniprofessional education (Meterko et al, 2004; Pollard and Miers, 2008; Siassakos, et al, 2009; Wilhelmsson et al, 2011; Murray-Davis et al, 2012). An interprofessional education indicative has been developed by teaching staff from the School of Nursing and Midwifery and School of Medicine at Queen’s University Belfast. The aim of the collaboration was to enhance interprofessional learning by providing an opportunity for medical students and midwifery students to interact and communicate prior to medical students undertaking their obstetrics and gynaecology placements. This has improved medical students placement experience by facilitating them to learn about the process of birth and familiarisation of the delivery suite environment and it also has the potential to enhance interprofessional relationships. Midwifery students benefit through the provision of an opportunity to teach and facilitate learning in relation to normal labour and birth and has provided them with an opportunity to build stronger and more positive relationships with another profession. This opportunity also provides a positive, confidence building forum where midwifery students utilise teaching and learning strategies which would be transferable to their professional role as registered midwives. The midwifery students were provided with an outline agenda in relation to content for the workshop, but then were allowed creative licence with regard to delivery of the workshop. The interactive workshops are undertaken within the University’s clinical education centre, utilising low fidelity simulation. The sessions are delivered 6 times per year and precede the medical students’ obstetric/gynaecology placement. All 4th year medical and final year midwifery students have an opportunity to participate. Preliminary evaluations of the workshops have been positive from both midwifery and medical students. The teaching sessions provided both midwifery and medical students with an introduction to inter professional learning and gave them an opportunity to learn about and respect each other’s roles. The midwifery students have commented on the enjoyable aspects of team working for preparing for the workshop and also the confidence gained from teaching medical students. The medical students have evaluated the teaching by midwifery students positively and felt that it lowered their anxiety levels going into the labour setting. A number of midwifery and medical students have subsequently worked with one another within the practice setting which has been recognised as beneficial. Both Schools have recognised the benefits of interprofessional education and have subsequently made a commitment to embed it within each curriculum.
Resumo:
There is recognition of the need to continuously improve inter-professional relationships within clinical practice. Mutual respect, effective communication and working together are factors which will contribute to higher standards of care (Miers et al, 2005; Begley, 2008). An inter-professional education initiative, using low-fidelity simulation has been piloted and subsequently embedded within a pre-registration midwifery curriculum. The aim of the collaboration is to enhance inter-professional learning by providing an opportunity for final year midwifery students and 4th year medical students within a non-threatening environment to interact and communicate prior to obstetric clinical placements. The midwifery students are provided with an outline agenda for the workshop, but are encouraged to use creative license with regard to workshop delivery. Preliminary evaluations have been positive from both midwifery and medical students. The teaching sessions have provided an opportunity to learn about and respect each other’s roles. The midwifery students have commented on the enjoyable aspects of team working during preparation and the confidence gained from teaching medical students. The medical students felt that the sessions lowered their anxiety levels going into the labour setting. This workshop will demonstrate how low-fidelity simulation can effectively enhance the students experience promoting team working and self-confidence.
Resumo:
Background: The global transfer of nursing and midwifery education to higher education institutes has led to student nurses and midwives experiencing challenges previously faced by traditional third-level students, including isolation, loneliness, financial difficulties and academic pressure. These challenges can contribute to increased stress and anxiety levels which may be detrimental to the successful transition to higher education, thus leading to an increase in attrition rates. Peer mentoring as an intervention has been suggested to be effective in supporting students in the transition to third-level education through enhancing a sense of belongingness and improving student satisfaction, engagement and retention rates. This proposed systematic review aims to determine the effectiveness of peer mentoring in enhancing levels of student engagement, sense of belonging and overall satisfaction of first-year undergraduate students following transition into higher education.
Methods: MEDLINE, Web of Knowledge, ProQuest, Embase, CINAHL, ERIC, PsycINFO and CENTRAL databases will be searched for qualitative, quantitative and mixed methods studies on the implementation of peer assessment strategies in higher education institutes (HEIs) or universities for full-time, first-year adult students (>17 years). Included studies will be limited to the English language. The quality of included studies will be assessed using a validated Mixed Methods Appraisal Tool (MMAT). The findings will be presented as a narrative synthesis or meta-analysis as appropriate following sequential explanatory synthesis.
Discussion: The review will provide clear, non-biased evidence-based guidance to all third-level educators on the effectiveness of peer-mentoring programmes for first-year undergraduates. The review is necessary to help establish which type of peer mentoring is most effective. The evidence from qualitative and quantitative studies drawn from the international literature will be utilised to illustrate the best way to implement and evaluate peer mentoring as an effective intervention and will be useful in guiding future research and practice in this area. These findings may be applied internationally across all disciplines.
Resumo:
The move into higher education is a real challenge for students from all educational backgrounds, with the adaptation to a new curriculum and style of learning and teaching posing a daunting task. A series of exercises were planned to boost the impact of the mathematics support for level four students and was focussed around a core module for all students. The intention was to develop greater confidence in tackling mathematical problems in all levels of ability and to provide more structured transition period in the first semester of level 4. Over a two-year period the teaching team for Biochemistry and Molecular Biology provided a series of structured formative tutorials and “interactive” online problems. Video solutions to all formative problems were made available, in order that students were able to engage with the problems at any time and were not disadvantaged if they could not attend. The formative problems were specifically set to dovetail into a practical report in which the mathematical skills developed were specifically assessed. Students overwhelmingly agreed that the structured formative activities had broadened their understanding of the subject and that more such activities would help. Furthermore, it is interesting to note that the package of changes undertaken resulted in a significant increase in the overall module mark over the two years of development.
Resumo:
Pelvic floor anatomy is complex and its three-dimensional organization is often difficult to understand for both undergrad- uate and postgraduate students. Here, we focused on several critical points that need to be considered when teaching the perineum. We have to deal with a mixed population of students and with a variety of interest. Yet, a perfect knowledge of the pelvic floor is the basis for any gynecologist and for any surgical intervention. Our objectives are several-fold; i) to estab- lish the objectives and the best way of teaching, ii) to identify and localize areas in the female pelvic floor that are suscepti- ble to generate problems in understanding the three-dimensional organization, iii) to create novel approaches by respecting the anatomical surroundings, and iv) prospectively, to identify elements that may create problems during surgery i.e. to have a closer look at nerve trajectories and on compression sites that may cause neuralgia or postoperative pain. A feedback from students concludes that they have difficulties to assimilate this much information, especially the different imaging tech- niques. Eventually, this will lead to a severe selection of what has to be taught and included in lectures or practicals. Another consequence is that more time to study prosected pelves needs to be given.
Resumo:
The purpose of this study was to determine the extent to which gender differences exist in student attitudes toward mathematics and in their performance in mathematics at the Grade Seven and Eight level. The study also questioned how parents influence the attitudes of this grade level of male and female students toward mathematics. Historically, the literature has demonstrated gender differences in the attitudes of students toward mathematics, and in parental support for classroom performance in mathematics. This study was an attempt to examine these differences at one senior public school in the Peel Board of Education. One hundred three Grade Seven and Eight students at a middle school in the Peel Board of Education volunteered to take part in a survey that examined their attitudes toward mathematics, their perceptions of their parents' attitudes toward mathematics and support for good performance in the mathematics classroom, parental expectations for education and future career choices. Gender differences related to performance levels in the mathematics classroom were examined using Pearson contingency analyses. Items from the survey that showed significant differences involved confidence in mathematics and confidence in writing mathematics tests, as well as a belief in the ability to work on mathematics problems. Male students in both the high and low performance groups demonstrated higher levels of confidence than the females in those groups. Female students, however, indicated interest in careers that would require training and knowledge of higher mathematics. Some of the reasons given to explain the gender differences in confidence levels included socialization pressures on females, peer acceptance, and attribution of success. Perceived parental support showed no significant differences across gender groups or performance levels. Possible explanations dealt with the family structure of the participants in the study. Studies that, in the past, have demonstrated gender differences in confidence levels were supported by this study, and discussed in detail. Studies that reported on differences in parental support for student performance, based on the gender of the parent, were not confirmed by this study, and reasons for this were also discussed. The implications for the classroom include: 1) build on the female students' strengths that will allow them to enjoy their experiences in mathematics; 2) stop using the boys as a comparison group; and 3) make students more aware of the need to continue studying mathematics to ensure a wider choice of future careers.
Resumo:
Forty-five 12- and 13-year-old females attending Grade 7 in North York, Ontario were randomly selected from a group of 100 females who had volunteered to participate in a oneday hands-on workshop called It's Your Choice at Seneca College. The goals of this intervention were to broaden the career horizons of these students and to help them realize the need to continue mathematics and science through high school in order to keep occupational options unlimited. The young women were given a pre- and post-attitude survey to provide background information. In the month following participation in the workshop the students were interviewed in small groups (S students per group) to discover their perceptions of the impact of the workshop. The interviews revealed that participants felt that after the workshop their feelings of self-confidence increased, specifically with respect to working with their hands. Participants felt more aware of the usefulness and importance of the study of mathematics, science and technology, They also felt that It's Your Choice increased their interest in careers in these domains and helped them to see that these careers are viable choices for females. The interviews also revealed that many of the participants felt that in this society their roles and their choices were influenced and probably limited by the fact that they are female.
Resumo:
This research studioo the effect of integrated instruction in mathematics and~ science on student achievement in and attitude towards both mathematics and science. A group of grade 9 academic students received instruction in both science and mathematics in an integrated program specifically developed for the purposes of the research. This group was compared to a control group that had received science and mathematics instruction in a traditional, nonintegrated program. The findings showed that in all measures of attitude, there was no significant difference between the students who participated in the integrated science and mathematics program and those who participated in a traditional science and mathematics program. The findings also revealed that integration did improve achievement on some of the measures used. The performance on mathematics open-ended problem-solving tasks improved after participation in the integrated program, suggesting that the integrated students were better able to apply their understanding of mathematics in a real-life context. The performance on the final science exam was also improved for the integrated group. Improvement was not noted on the other measures, which included EQAO scores and laboratory practical tasks. These results raise the issue of the suitability of the instruments used to gauge both achievement and attitude. The accuracy and suitability of traditional measures of achievement are considered. It is argued that they should not necessarily be used as the measure of the value of integrated instruction in a science and mathematics classroom.
Resumo:
Ontario bansho is an emergent mathematics instructional strategy used by teachers working within communities of practice that has been deemed to have a transformational effect on teachers' professional learning of mathematics. This study sought to answer the following question: How does teachers' implementation of Ontario bansho within their communities of practice inform their professional learning process concerning mathematics-for-teaching? Two other key questions also guided the study: What processes support teachers' professional learning of content-for-teaching? What conditions support teachers' professional learning of content-for-teaching? The study followed an interpretive phenomenological approach to collect data using a purposive sampling of teachers as participants. The researcher conducted interviews and followed an interpretive approach to data analysis to investigate how teachers construct meaning and create interpretations through their social interactions. The study developed a model of professional learning made up of 3 processes, informing with resources, engaging with students, and visualizing and schematizing in which the participants engaged and 2 conditions, ownership and community that supported the 3 processes. The 3 processes occur in ways that are complex, recursive, nonpredictable, and contextual. This model provides a framework for facilitators and leaders to plan for effective, content-relevant professional learning by placing teachers, students, and their learning at the heart of professional learning.
Resumo:
This thesis research was a qualitative case study of a single class of Interdisciplinary Studies: Introduction to Engineering taught in a secondary school. The study endeavoured to explore students' experiences in and perceptions of the course, and to investigate the viability of engineering as an interdisciplinary theme at the secondary school level. Data were collected in the form of student questionnaires, the researcher's observations and reflections, and artefacts representative of students' work. Data analysis was performed by coding textual data and classifying text segments into common themes. The themes that emerged from the data were aligned with facets of interdisciplinary study, including making connections, project-based learning, and student engagement and affective outcomes. The findings of the study showed that students were positive about their experiences in the course, and enjoyed its project-driven nature. Content from mathematics, physics, and technological design was easily integrated under the umbrella of engineering. Students felt that the opportunity to develop problem solving and teamwork skills were two of the most important aspects of the course and could be relevant not only for engineering, but for other disciplines or their day-to-day lives after secondary school. The study concluded that engineering education in secondary school can be a worthwhile experience for a variety of students and not just those intending postsecondary study in engineering. This has implications for the inclusion of engineering in the secondary school curriculum and can inform the practice of curriculum planners at the school, school board, and provincial levels. Suggested directions for further research include classroom-based action research in the areas of technological education, engineering education in secondary school, and interdisciplinary education.