866 resultados para the Fuzzy Colour Segmentation Algorithm
Resumo:
This thesis concentrates on developing a practical local approach methodology based on micro mechanical models for the analysis of ductile fracture of welded joints. Two major problems involved in the local approach, namely the dilational constitutive relation reflecting the softening behaviour of material, and the failure criterion associated with the constitutive equation, have been studied in detail. Firstly, considerable efforts were made on the numerical integration and computer implementation for the non trivial dilational Gurson Tvergaard model. Considering the weaknesses of the widely used Euler forward integration algorithms, a family of generalized mid point algorithms is proposed for the Gurson Tvergaard model. Correspondingly, based on the decomposition of stresses into hydrostatic and deviatoric parts, an explicit seven parameter expression for the consistent tangent moduli of the algorithms is presented. This explicit formula avoids any matrix inversion during numerical iteration and thus greatly facilitates the computer implementation of the algorithms and increase the efficiency of the code. The accuracy of the proposed algorithms and other conventional algorithms has been assessed in a systematic manner in order to highlight the best algorithm for this study. The accurate and efficient performance of present finite element implementation of the proposed algorithms has been demonstrated by various numerical examples. It has been found that the true mid point algorithm (a = 0.5) is the most accurate one when the deviatoric strain increment is radial to the yield surface and it is very important to use the consistent tangent moduli in the Newton iteration procedure. Secondly, an assessment of the consistency of current local failure criteria for ductile fracture, the critical void growth criterion, the constant critical void volume fraction criterion and Thomason's plastic limit load failure criterion, has been made. Significant differences in the predictions of ductility by the three criteria were found. By assuming the void grows spherically and using the void volume fraction from the Gurson Tvergaard model to calculate the current void matrix geometry, Thomason's failure criterion has been modified and a new failure criterion for the Gurson Tvergaard model is presented. Comparison with Koplik and Needleman's finite element results shows that the new failure criterion is fairly accurate indeed. A novel feature of the new failure criterion is that a mechanism for void coalescence is incorporated into the constitutive model. Hence the material failure is a natural result of the development of macroscopic plastic flow and the microscopic internal necking mechanism. By the new failure criterion, the critical void volume fraction is not a material constant and the initial void volume fraction and/or void nucleation parameters essentially control the material failure. This feature is very desirable and makes the numerical calibration of void nucleation parameters(s) possible and physically sound. Thirdly, a local approach methodology based on the above two major contributions has been built up in ABAQUS via the user material subroutine UMAT and applied to welded T joints. By using the void nucleation parameters calibrated from simple smooth and notched specimens, it was found that the fracture behaviour of the welded T joints can be well predicted using present methodology. This application has shown how the damage parameters of both base material and heat affected zone (HAZ) material can be obtained in a step by step manner and how useful and capable the local approach methodology is in the analysis of fracture behaviour and crack development as well as structural integrity assessment of practical problems where non homogeneous materials are involved. Finally, a procedure for the possible engineering application of the present methodology is suggested and discussed.
Resumo:
Since its introduction, fuzzy set theory has become a useful tool in the mathematical modelling of problems in Operations Research and many other fields. The number of applications is growing continuously. In this thesis we investigate a special type of fuzzy set, namely fuzzy numbers. Fuzzy numbers (which will be considered in the thesis as possibility distributions) have been widely used in quantitative analysis in recent decades. In this work two measures of interactivity are defined for fuzzy numbers, the possibilistic correlation and correlation ratio. We focus on both the theoretical and practical applications of these new indices. The approach is based on the level-sets of the fuzzy numbers and on the concept of the joint distribution of marginal possibility distributions. The measures possess similar properties to the corresponding probabilistic correlation and correlation ratio. The connections to real life decision making problems are emphasized focusing on the financial applications. We extend the definitions of possibilistic mean value, variance, covariance and correlation to quasi fuzzy numbers and prove necessary and sufficient conditions for the finiteness of possibilistic mean value and variance. The connection between the concepts of probabilistic and possibilistic correlation is investigated using an exponential distribution. The use of fuzzy numbers in practical applications is demonstrated by the Fuzzy Pay-Off method. This model for real option valuation is based on findings from earlier real option valuation models. We illustrate the use of number of different types of fuzzy numbers and mean value concepts with the method and provide a real life application.
Resumo:
The process of cold storage chambers contributes largely to the quality and longevity of stored products. In recent years, it has been intensified the study of control strategies in order to decrease the temperature change inside the storage chamber and to reduce the electric power consumption. This study has developed a system for data acquisition and process control, in LabVIEW language, to be applied in the cooling system of a refrigerating chamber of 30m³. The use of instrumentation and the application developed fostered the development of scientific experiments, which aimed to study the dynamic behavior of the refrigeration system, compare the performance of control strategies and the heat engine, even due to the controlled temperature, or to the electricity consumption. This system tested the strategies for on-off control, PID and fuzzy. Regarding power consumption, the fuzzy controller showed the best result, saving 10% when compared with other tested strategies.
Resumo:
The goal of this study was to develop a fuzzy model to predict the occupancy rate of free-stalls facilities of dairy cattle, aiding to optimize the design of projects. The following input variables were defined for the development of the fuzzy system: dry bulb temperature (Tdb, °C), wet bulb temperature (Twb, °C) and black globe temperature (Tbg, °C). Based on the input variables, the fuzzy system predicts the occupancy rate (OR, %) of dairy cattle in free-stall barns. For the model validation, data collecting were conducted on the facilities of the Intensive System of Milk Production (SIPL), in the Dairy Cattle National Research Center (CNPGL) of Embrapa. The OR values, estimated by the fuzzy system, presented values of average standard deviation of 3.93%, indicating low rate of errors in the simulation. Simulated and measured results were statistically equal (P>0.05, t Test). After validating the proposed model, the average percentage of correct answers for the simulated data was 89.7%. Therefore, the fuzzy system developed for the occupancy rate prediction of free-stalls facilities for dairy cattle allowed a realistic prediction of stalls occupancy rate, allowing the planning and design of free-stall barns.
Resumo:
A fuzzy ruled-based system was developed in this study and resulted in an index indicating the level of uncertainty related to commercial transactions between cassava growers and their dealers. The fuzzy system was developed based on Transaction Cost Economics approach. The fuzzy system was developed from input variables regarding information sharing between grower and dealer on “Demand/purchase Forecasting”, “Production Forecasting” and “Production Innovation”. The output variable is the level of uncertainty regarding the transaction between seller and buyer agent, which may serve as a system for detecting inefficiencies. Evidences from 27 cassava growers registered in the Regional Development Offices of Tupa and Assis, São Paulo, Brazil, and 48 of their dealers supported the development of the system. The mathematical model indicated that 55% of the growers present a Very High level of uncertainty, 33% present Medium or High. The others present Low or Very Low level of uncertainty. From the model, simulations of external interferences can be implemented in order to improve the degree of uncertainty and, thus, lower transaction costs.
Resumo:
A growing concern for organisations is how they should deal with increasing amounts of collected data. With fierce competition and smaller margins, organisations that are able to fully realize the potential in the data they collect can gain an advantage over the competitors. It is almost impossible to avoid imprecision when processing large amounts of data. Still, many of the available information systems are not capable of handling imprecise data, even though it can offer various advantages. Expert knowledge stored as linguistic expressions is a good example of imprecise but valuable data, i.e. data that is hard to exactly pinpoint to a definitive value. There is an obvious concern among organisations on how this problem should be handled; finding new methods for processing and storing imprecise data are therefore a key issue. Additionally, it is equally important to show that tacit knowledge and imprecise data can be used with success, which encourages organisations to analyse their imprecise data. The objective of the research conducted was therefore to explore how fuzzy ontologies could facilitate the exploitation and mobilisation of tacit knowledge and imprecise data in organisational and operational decision making processes. The thesis introduces both practical and theoretical advances on how fuzzy logic, ontologies (fuzzy ontologies) and OWA operators can be utilized for different decision making problems. It is demonstrated how a fuzzy ontology can model tacit knowledge which was collected from wine connoisseurs. The approach can be generalised and applied also to other practically important problems, such as intrusion detection. Additionally, a fuzzy ontology is applied in a novel consensus model for group decision making. By combining the fuzzy ontology with Semantic Web affiliated techniques novel applications have been designed. These applications show how the mobilisation of knowledge can successfully utilize also imprecise data. An important part of decision making processes is undeniably aggregation, which in combination with a fuzzy ontology provides a promising basis for demonstrating the benefits that one can retrieve from handling imprecise data. The new aggregation operators defined in the thesis often provide new possibilities to handle imprecision and expert opinions. This is demonstrated through both theoretical examples and practical implementations. This thesis shows the benefits of utilizing all the available data one possess, including imprecise data. By combining the concept of fuzzy ontology with the Semantic Web movement, it aspires to show the corporate world and industry the benefits of embracing fuzzy ontologies and imprecision.
Resumo:
Real option valuation, in particular the fuzzy pay-off method, has proven to be useful in defining risk and visualizing imprecision of investments in various industry applications. This study examines whether the evaluation of risk and profitability for public real estate investments can be improved by using real option methodology. Firstly, the context of real option valuation in the real estate industry is examined. Further, an empirical case study is performed on 30 real estate investments of a Finnish government enterprise in order to determine whether the presently used investment analysis system can be complemented by the pay-off method. Despite challenges in the application of the pay-off method to the case company’s large investment base, real option valuation is found to create additional value and facilitate more robust risk analysis in public real estate applications.
Resumo:
This master thesis work introduces the fuzzy tolerance/equivalence relation and its application in cluster analysis. The work presents about the construction of fuzzy equivalence relations using increasing generators. Here, we investigate and research on the role of increasing generators for the creation of intersection, union and complement operators. The objective is to develop different varieties of fuzzy tolerance/equivalence relations using different varieties of increasing generators. At last, we perform a comparative study with these developed varieties of fuzzy tolerance/equivalence relations in their application to a clustering method.
Resumo:
Coronary artery disease (CAD) is a worldwide leading cause of death. The standard method for evaluating critical partial occlusions is coronary arteriography, a catheterization technique which is invasive, time consuming, and costly. There are noninvasive approaches for the early detection of CAD. The basis for the noninvasive diagnosis of CAD has been laid in a sequential analysis of the risk factors, and the results of the treadmill test and myocardial perfusion scintigraphy (MPS). Many investigators have demonstrated that the diagnostic applications of MPS are appropriate for patients who have an intermediate likelihood of disease. Although this information is useful, it is only partially utilized in clinical practice due to the difficulty to properly classify the patients. Since the seminal work of Lotfi Zadeh, fuzzy logic has been applied in numerous areas. In the present study, we proposed and tested a model to select patients for MPS based on fuzzy sets theory. A group of 1053 patients was used to develop the model and another group of 1045 patients was used to test it. Receiver operating characteristic curves were used to compare the performance of the fuzzy model against expert physician opinions, and showed that the performance of the fuzzy model was equal or superior to that of the physicians. Therefore, we conclude that the fuzzy model could be a useful tool to assist the general practitioner in the selection of patients for MPS.
Resumo:
We compared the cost-benefit of two algorithms, recently proposed by the Centers for Disease Control and Prevention, USA, with the conventional one, the most appropriate for the diagnosis of hepatitis C virus (HCV) infection in the Brazilian population. Serum samples were obtained from 517 ELISA-positive or -inconclusive blood donors who had returned to Fundação Pró-Sangue/Hemocentro de São Paulo to confirm previous results. Algorithm A was based on signal-to-cut-off (s/co) ratio of ELISA anti-HCV samples that show s/co ratio ³95% concordance with immunoblot (IB) positivity. For algorithm B, reflex nucleic acid amplification testing by PCR was required for ELISA-positive or -inconclusive samples and IB for PCR-negative samples. For algorithm C, all positive or inconclusive ELISA samples were submitted to IB. We observed a similar rate of positive results with the three algorithms: 287, 287, and 285 for A, B, and C, respectively, and 283 were concordant with one another. Indeterminate results from algorithms A and C were elucidated by PCR (expanded algorithm) which detected two more positive samples. The estimated cost of algorithms A and B was US$21,299.39 and US$32,397.40, respectively, which were 43.5 and 14.0% more economic than C (US$37,673.79). The cost can vary according to the technique used. We conclude that both algorithms A and B are suitable for diagnosing HCV infection in the Brazilian population. Furthermore, algorithm A is the more practical and economical one since it requires supplemental tests for only 54% of the samples. Algorithm B provides early information about the presence of viremia.
Resumo:
This paper evaluated the influence of temperature and concentration of the sucrose syrup on the pre-osmotic dehydration of peaches. Physical (colour and texture) and chemical variables (soluble solid content; total sugar, reducing and non-reducing sugar contents; and titratable acidity) were investigated, as well as the osmotic dehydration parameters (loss of weight and water; solids incorporation). An experimental central composite design was employed varying the temperature (from 30 to 50 ºC) and concentration (from 45 to 65 ºBrix) and maintaining the syrup to fruit ratio (4:1), process time (4 hours), and format (slices). The degree of acceptance was used in the sensory analysis evaluating the following characteristics: appearance, taste, texture, colour, and overall quality using a hedonic scale. The results were modelled using the Statistica program (v. 6.0) and the Response Surface Methodology. The mathematical models of the following dimensionless variations yielded significant (p < 0.05) and predictive results: soluble solids content, total and non-reducing sugar contents, titratable acidity, colour parameter L*, and water loss. The models of the attributes colour and appearance yielded significant (p < 0.10) but not predictive results. Temperature was the prevalent effect in the models. The process conditions in the range from 50 to 54.1 ºC and from 45 to 65 ºBrix led to greater water losses and better sensory performances.
Resumo:
Viticultural practices in the State of Santa Catarina, Brazil, have shown economic growth, with the production of grapes used to produce wines and grape juice. Grapes are rich in phenolic compounds which have drawn attention not only because of their important role in the development of products derived from grapes, but also for their potential beneficial health effects. The objective of this study was to evaluate commercial, organic and homemade grape juices produced in Santa Catarina. Grape juices were analyzed for total phenolic content, colour, and antioxidant activity. The commercial juices had the highest average values for total monomeric anthocyanins and total phenolics. There was a strong positive correlation (R = 0.9566) between the antioxidant activity and total phenolic content for the commercial juice. In addition, the Principle Components Analysis showed a strong positive correlation between the red colour and total monomeric anthocyanins. However, the total monomeric anthocyanis and polymeric anthocyanins showed a negative correlation.
Resumo:
This research attempted to address the question of the role of explicit algorithms and episodic contexts in the acquisition of computational procedures for regrouping in subtraction. Three groups of students having difficulty learning to subtract with regrouping were taught procedures for doing so through either an explicit algorithm, an episodic content or an examples approach. It was hypothesized that the use of an explicit algorithm represented in a flow chart format would facilitate the acquisition and retention of specific procedural steps relative to the other two conditions. On the other hand, the use of paragraph stories to create episodic content was expected to facilitate the retrieval of algorithms, particularly in a mixed presentation format. The subjects were tested on similar, near, and far transfer questions over a four-day period. Near and far transfer algorithms were also introduced on Day Two. The results suggested that both explicit and episodic context facilitate performance on questions requiring subtraction with regrouping. However, the differential effects of these two approaches on near and far transfer questions were not as easy to identify. Explicit algorithms may facilitate the acquisition of specific procedural steps while at the same time inhibiting the application of such steps to transfer questions. Similarly, the value of episodic context in cuing the retrieval of an algorithm may be limited by the ability of a subject to identify and classify a new question as an exemplar of a particular episodically deflned problem type or category. The implications of these findings in relation to the procedures employed in the teaching of Mathematics to students with learning problems are discussed in detail.
Resumo:
One of the fundamental problems with image processing of petrographic thin sections is that the appearance (colour I intensity) of a mineral grain will vary with the orientation of the crystal lattice to the preferred direction of the polarizing filters on a petrographic microscope. This makes it very difficult to determine grain boundaries, grain orientation and mineral species from a single captured image. To overcome this problem, the Rotating Polarizer Stage was used to replace the fixed polarizer and analyzer on a standard petrographic microscope. The Rotating Polarizer Stage rotates the polarizers while the thin section remains stationary, allowing for better data gathering possibilities. Instead of capturing a single image of a thin section, six composite data sets are created by rotating the polarizers through 900 (or 1800 if quartz c-axes measurements need to be taken) in both plane and cross polarized light. The composite data sets can be viewed as separate images and consist of the average intensity image, the maximum intensity image, the minimum intensity image, the maximum position image, the minimum position image and the gradient image. The overall strategy used by the image processing system is to gather the composite data sets, determine the grain boundaries using the gradient image, classify the different mineral species present using the minimum and maximum intensity images and then perform measurements of grain shape and, where possible, partial crystallographic orientation using the maximum intensity and maximum position images.
Resumo:
Ordered gene problems are a very common classification of optimization problems. Because of their popularity countless algorithms have been developed in an attempt to find high quality solutions to the problems. It is also common to see many different types of problems reduced to ordered gene style problems as there are many popular heuristics and metaheuristics for them due to their popularity. Multiple ordered gene problems are studied, namely, the travelling salesman problem, bin packing problem, and graph colouring problem. In addition, two bioinformatics problems not traditionally seen as ordered gene problems are studied: DNA error correction and DNA fragment assembly. These problems are studied with multiple variations and combinations of heuristics and metaheuristics with two distinct types or representations. The majority of the algorithms are built around the Recentering- Restarting Genetic Algorithm. The algorithm variations were successful on all problems studied, and particularly for the two bioinformatics problems. For DNA Error Correction multiple cases were found with 100% of the codes being corrected. The algorithm variations were also able to beat all other state-of-the-art DNA Fragment Assemblers on 13 out of 16 benchmark problem instances.