986 resultados para sistemi integrati, CAT tools, machine translation
Resumo:
Il riconoscimento delle condizioni del manto stradale partendo esclusivamente dai dati raccolti dallo smartphone di un ciclista a bordo del suo mezzo è un ambito di ricerca finora poco esplorato. Per lo sviluppo di questa tesi è stata sviluppata un'apposita applicazione, che combinata a script Python permette di riconoscere differenti tipologie di asfalto. L’applicazione raccoglie i dati rilevati dai sensori di movimento integrati nello smartphone, che registra i movimenti mentre il ciclista è alla guida del suo mezzo. Lo smartphone è fissato in un apposito holder fissato sul manubrio della bicicletta e registra i dati provenienti da giroscopio, accelerometro e magnetometro. I dati sono memorizzati su file CSV, che sono elaborati fino ad ottenere un unico DataSet contenente tutti i dati raccolti con le features estratte mediante appositi script Python. A ogni record sarà assegnato un cluster deciso in base ai risultati prodotti da K-means, risultati utilizzati in seguito per allenare algoritmi Supervised. Lo scopo degli algoritmi è riconoscere la tipologia di manto stradale partendo da questi dati. Per l’allenamento, il DataSet è stato diviso in due parti: il training set dal quale gli algoritmi imparano a classificare i dati e il test set sul quale gli algoritmi applicano ciò che hanno imparato per dare in output la classificazione che ritengono idonea. Confrontando le previsioni degli algoritmi con quello che i dati effettivamente rappresentano si ottiene la misura dell’accuratezza dell’algoritmo.
Resumo:
In the last decade, manufacturing companies have been facing two significant challenges. First, digitalization imposes adopting Industry 4.0 technologies and allows creating smart, connected, self-aware, and self-predictive factories. Second, the attention on sustainability imposes to evaluate and reduce the impact of the implemented solutions from economic and social points of view. In manufacturing companies, the maintenance of physical assets assumes a critical role. Increasing the reliability and the availability of production systems leads to the minimization of systems’ downtimes; In addition, the proper system functioning avoids production wastes and potentially catastrophic accidents. Digitalization and new ICT technologies have assumed a relevant role in maintenance strategies. They allow assessing the health condition of machinery at any point in time. Moreover, they allow predicting the future behavior of machinery so that maintenance interventions can be planned, and the useful life of components can be exploited until the time instant before their fault. This dissertation provides insights on Predictive Maintenance goals and tools in Industry 4.0 and proposes a novel data acquisition, processing, sharing, and storage framework that addresses typical issues machine producers and users encounter. The research elaborates on two research questions that narrow down the potential approaches to data acquisition, processing, and analysis for fault diagnostics in evolving environments. The research activity is developed according to a research framework, where the research questions are addressed by research levers that are explored according to research topics. Each topic requires a specific set of methods and approaches; however, the overarching methodological approach presented in this dissertation includes three fundamental aspects: the maximization of the quality level of input data, the use of Machine Learning methods for data analysis, and the use of case studies deriving from both controlled environments (laboratory) and real-world instances.
Resumo:
Machine learning is widely adopted to decode multi-variate neural time series, including electroencephalographic (EEG) and single-cell recordings. Recent solutions based on deep learning (DL) outperformed traditional decoders by automatically extracting relevant discriminative features from raw or minimally pre-processed signals. Convolutional Neural Networks (CNNs) have been successfully applied to EEG and are the most common DL-based EEG decoders in the state-of-the-art (SOA). However, the current research is affected by some limitations. SOA CNNs for EEG decoding usually exploit deep and heavy structures with the risk of overfitting small datasets, and architectures are often defined empirically. Furthermore, CNNs are mainly validated by designing within-subject decoders. Crucially, the automatically learned features mainly remain unexplored; conversely, interpreting these features may be of great value to use decoders also as analysis tools, highlighting neural signatures underlying the different decoded brain or behavioral states in a data-driven way. Lastly, SOA DL-based algorithms used to decode single-cell recordings rely on more complex, slower to train and less interpretable networks than CNNs, and the use of CNNs with these signals has not been investigated. This PhD research addresses the previous limitations, with reference to P300 and motor decoding from EEG, and motor decoding from single-neuron activity. CNNs were designed light, compact, and interpretable. Moreover, multiple training strategies were adopted, including transfer learning, which could reduce training times promoting the application of CNNs in practice. Furthermore, CNN-based EEG analyses were proposed to study neural features in the spatial, temporal and frequency domains, and proved to better highlight and enhance relevant neural features related to P300 and motor states than canonical EEG analyses. Remarkably, these analyses could be used, in perspective, to design novel EEG biomarkers for neurological or neurodevelopmental disorders. Lastly, CNNs were developed to decode single-neuron activity, providing a better compromise between performance and model complexity.
Resumo:
In the framework of industrial problems, the application of Constrained Optimization is known to have overall very good modeling capability and performance and stands as one of the most powerful, explored, and exploited tool to address prescriptive tasks. The number of applications is huge, ranging from logistics to transportation, packing, production, telecommunication, scheduling, and much more. The main reason behind this success is to be found in the remarkable effort put in the last decades by the OR community to develop realistic models and devise exact or approximate methods to solve the largest variety of constrained or combinatorial optimization problems, together with the spread of computational power and easily accessible OR software and resources. On the other hand, the technological advancements lead to a data wealth never seen before and increasingly push towards methods able to extract useful knowledge from them; among the data-driven methods, Machine Learning techniques appear to be one of the most promising, thanks to its successes in domains like Image Recognition, Natural Language Processes and playing games, but also the amount of research involved. The purpose of the present research is to study how Machine Learning and Constrained Optimization can be used together to achieve systems able to leverage the strengths of both methods: this would open the way to exploiting decades of research on resolution techniques for COPs and constructing models able to adapt and learn from available data. In the first part of this work, we survey the existing techniques and classify them according to the type, method, or scope of the integration; subsequently, we introduce a novel and general algorithm devised to inject knowledge into learning models through constraints, Moving Target. In the last part of the thesis, two applications stemming from real-world projects and done in collaboration with Optit will be presented.
Resumo:
Whole Exome Sequencing (WES) is rapidly becoming the first-tier test in clinics, both thanks to its declining costs and the development of new platforms that help clinicians in the analysis and interpretation of SNV and InDels. However, we still know very little on how CNV detection could increase WES diagnostic yield. A plethora of exome CNV callers have been published over the years, all showing good performances towards specific CNV classes and sizes, suggesting that the combination of multiple tools is needed to obtain an overall good detection performance. Here we present TrainX, a ML-based method for calling heterozygous CNVs in WES data using EXCAVATOR2 Normalized Read Counts. We select males and females’ non pseudo-autosomal chromosome X alignments to construct our dataset and train our model, make predictions on autosomes target regions and use HMM to call CNVs. We compared TrainX against a set of CNV tools differing for the detection method (GATK4 gCNV, ExomeDepth, DECoN, CNVkit and EXCAVATOR2) and found that our algorithm outperformed them in terms of stability, as we identified both deletions and duplications with good scores (0.87 and 0.82 F1-scores respectively) and for sizes reaching the minimum resolution of 2 target regions. We also evaluated the method robustness using a set of WES and SNP array data (n=251), part of the Italian cohort of Epi25 collaborative, and were able to retrieve all clinical CNVs previously identified by the SNP array. TrainX showed good accuracy in detecting heterozygous CNVs of different sizes, making it a promising tool to use in a diagnostic setting.
Resumo:
One of the most visionary goals of Artificial Intelligence is to create a system able to mimic and eventually surpass the intelligence observed in biological systems including, ambitiously, the one observed in humans. The main distinctive strength of humans is their ability to build a deep understanding of the world by learning continuously and drawing from their experiences. This ability, which is found in various degrees in all intelligent biological beings, allows them to adapt and properly react to changes by incrementally expanding and refining their knowledge. Arguably, achieving this ability is one of the main goals of Artificial Intelligence and a cornerstone towards the creation of intelligent artificial agents. Modern Deep Learning approaches allowed researchers and industries to achieve great advancements towards the resolution of many long-standing problems in areas like Computer Vision and Natural Language Processing. However, while this current age of renewed interest in AI allowed for the creation of extremely useful applications, a concerningly limited effort is being directed towards the design of systems able to learn continuously. The biggest problem that hinders an AI system from learning incrementally is the catastrophic forgetting phenomenon. This phenomenon, which was discovered in the 90s, naturally occurs in Deep Learning architectures where classic learning paradigms are applied when learning incrementally from a stream of experiences. This dissertation revolves around the Continual Learning field, a sub-field of Machine Learning research that has recently made a comeback following the renewed interest in Deep Learning approaches. This work will focus on a comprehensive view of continual learning by considering algorithmic, benchmarking, and applicative aspects of this field. This dissertation will also touch on community aspects such as the design and creation of research tools aimed at supporting Continual Learning research, and the theoretical and practical aspects concerning public competitions in this field.
Resumo:
The Three-Dimensional Single-Bin-Size Bin Packing Problem is one of the most studied problem in the Cutting & Packing category. From a strictly mathematical point of view, it consists of packing a finite set of strongly heterogeneous “small” boxes, called items, into a finite set of identical “large” rectangles, called bins, minimizing the unused volume and requiring that the items are packed without overlapping. The great interest is mainly due to the number of real-world applications in which it arises, such as pallet and container loading, cutting objects out of a piece of material and packaging design. Depending on these real-world applications, more objective functions and more practical constraints could be needed. After a brief discussion about the real-world applications of the problem and a exhaustive literature review, the design of a two-stage algorithm to solve the aforementioned problem is presented. The algorithm must be able to provide the spatial coordinates of the placed boxes vertices and also the optimal boxes input sequence, while guaranteeing geometric, stability, fragility constraints and a reduced computational time. Due to NP-hard complexity of this type of combinatorial problems, a fusion of metaheuristic and machine learning techniques is adopted. In particular, a hybrid genetic algorithm coupled with a feedforward neural network is used. In the first stage, a rich dataset is created starting from a set of real input instances provided by an industrial company and the feedforward neural network is trained on it. After its training, given a new input instance, the hybrid genetic algorithm is able to run using the neural network output as input parameter vector, providing as output the optimal solution. The effectiveness of the proposed works is confirmed via several experimental tests.
Resumo:
Deep learning methods are extremely promising machine learning tools to analyze neuroimaging data. However, their potential use in clinical settings is limited because of the existing challenges of applying these methods to neuroimaging data. In this study, first a data leakage type caused by slice-level data split that is introduced during training and validation of a 2D CNN is surveyed and a quantitative assessment of the model’s performance overestimation is presented. Second, an interpretable, leakage-fee deep learning software written in a python language with a wide range of options has been developed to conduct both classification and regression analysis. The software was applied to the study of mild cognitive impairment (MCI) in patients with small vessel disease (SVD) using multi-parametric MRI data where the cognitive performance of 58 patients measured by five neuropsychological tests is predicted using a multi-input CNN model taking brain image and demographic data. Each of the cognitive test scores was predicted using different MRI-derived features. As MCI due to SVD has been hypothesized to be the effect of white matter damage, DTI-derived features MD and FA produced the best prediction outcome of the TMT-A score which is consistent with the existing literature. In a second study, an interpretable deep learning system aimed at 1) classifying Alzheimer disease and healthy subjects 2) examining the neural correlates of the disease that causes a cognitive decline in AD patients using CNN visualization tools and 3) highlighting the potential of interpretability techniques to capture a biased deep learning model is developed. Structural magnetic resonance imaging (MRI) data of 200 subjects was used by the proposed CNN model which was trained using a transfer learning-based approach producing a balanced accuracy of 71.6%. Brain regions in the frontal and parietal lobe showing the cerebral cortex atrophy were highlighted by the visualization tools.
Resumo:
Image-to-image (i2i) translation networks can generate fake images beneficial for many applications in augmented reality, computer graphics, and robotics. However, they require large scale datasets and high contextual understanding to be trained correctly. In this thesis, we propose strategies for solving these problems, improving performances of i2i translation networks by using domain- or physics-related priors. The thesis is divided into two parts. In Part I, we exploit human abstraction capabilities to identify existing relationships in images, thus defining domains that can be leveraged to improve data usage efficiency. We use additional domain-related information to train networks on web-crawled data, hallucinate scenarios unseen during training, and perform few-shot learning. In Part II, we instead rely on physics priors. First, we combine realistic physics-based rendering with generative networks to boost outputs realism and controllability. Then, we exploit naive physical guidance to drive a manifold reorganization, which allowed generating continuous conditions such as timelapses.
Resumo:
Allostery is a phenomenon of fundamental importance in biology, allowing regulation of function and dynamic adaptability of enzymes and proteins. Despite the allosteric effect was first observed more than a century ago allostery remains a biophysical enigma, defined as the “second secret of life”. The challenge is mainly associated to the rather complex nature of the allosteric mechanisms, which manifests itself as the alteration of the biological function of a protein/enzyme (e.g. ligand/substrate binding at the active site) by binding of “other object” (“allos stereos” in Greek) at a site distant (> 1 nanometer) from the active site, namely the effector site. Thus, at the heart of allostery there is signal propagation from the effector to the active site through a dense protein matrix, with a fundamental challenge being represented by the elucidation of the physico-chemical interactions between amino acid residues allowing communicatio n between the two binding sites, i.e. the “allosteric pathways”. Here, we propose a multidisciplinary approach based on a combination of computational chemistry, involving molecular dynamics simulations of protein motions, (bio)physical analysis of allosteric systems, including multiple sequence alignments of known allosteric systems, and mathematical tools based on graph theory and machine learning that can greatly help understanding the complexity of dynamical interactions involved in the different allosteric systems. The project aims at developing robust and fast tools to identify unknown allosteric pathways. The characterization and predictions of such allosteric spots could elucidate and fully exploit the power of allosteric modulation in enzymes and DNA-protein complexes, with great potential applications in enzyme engineering and drug discovery.
Resumo:
Machine (and deep) learning technologies are more and more present in several fields. It is undeniable that many aspects of our society are empowered by such technologies: web searches, content filtering on social networks, recommendations on e-commerce websites, mobile applications, etc., in addition to academic research. Moreover, mobile devices and internet sites, e.g., social networks, support the collection and sharing of information in real time. The pervasive deployment of the aforementioned technological instruments, both hardware and software, has led to the production of huge amounts of data. Such data has become more and more unmanageable, posing challenges to conventional computing platforms, and paving the way to the development and widespread use of the machine and deep learning. Nevertheless, machine learning is not only a technology. Given a task, machine learning is a way of proceeding (a way of thinking), and as such can be approached from different perspectives (points of view). This, in particular, will be the focus of this research. The entire work concentrates on machine learning, starting from different sources of data, e.g., signals and images, applied to different domains, e.g., Sport Science and Social History, and analyzed from different perspectives: from a non-data scientist point of view through tools and platforms; setting a problem stage from scratch; implementing an effective application for classification tasks; improving user interface experience through Data Visualization and eXtended Reality. In essence, not only in a quantitative task, not only in a scientific environment, and not only from a data-scientist perspective, machine (and deep) learning can do the difference.
Resumo:
In recent decades, two prominent trends have influenced the data modeling field, namely network analysis and machine learning. This thesis explores the practical applications of these techniques within the domain of drug research, unveiling their multifaceted potential for advancing our comprehension of complex biological systems. The research undertaken during this PhD program is situated at the intersection of network theory, computational methods, and drug research. Across six projects presented herein, there is a gradual increase in model complexity. These projects traverse a diverse range of topics, with a specific emphasis on drug repurposing and safety in the context of neurological diseases. The aim of these projects is to leverage existing biomedical knowledge to develop innovative approaches that bolster drug research. The investigations have produced practical solutions, not only providing insights into the intricacies of biological systems, but also allowing the creation of valuable tools for their analysis. In short, the achievements are: • A novel computational algorithm to identify adverse events specific to fixed-dose drug combinations. • A web application that tracks the clinical drug research response to SARS-CoV-2. • A Python package for differential gene expression analysis and the identification of key regulatory "switch genes". • The identification of pivotal events causing drug-induced impulse control disorders linked to specific medications. • An automated pipeline for discovering potential drug repurposing opportunities. • The creation of a comprehensive knowledge graph and development of a graph machine learning model for predictions. Collectively, these projects illustrate diverse applications of data science and network-based methodologies, highlighting the profound impact they can have in supporting drug research activities.
Resumo:
Riding the wave of recent groundbreaking achievements, artificial intelligence (AI) is currently the buzzword on everybody’s lips and, allowing algorithms to learn from historical data, Machine Learning (ML) emerged as its pinnacle. The multitude of algorithms, each with unique strengths and weaknesses, highlights the absence of a universal solution and poses a challenging optimization problem. In response, automated machine learning (AutoML) navigates vast search spaces within minimal time constraints. By lowering entry barriers, AutoML emerged as promising the democratization of AI, yet facing some challenges. In data-centric AI, the discipline of systematically engineering data used to build an AI system, the challenge of configuring data pipelines is rather simple. We devise a methodology for building effective data pre-processing pipelines in supervised learning as well as a data-centric AutoML solution for unsupervised learning. In human-centric AI, many current AutoML tools were not built around the user but rather around algorithmic ideas, raising ethical and social bias concerns. We contribute by deploying AutoML tools aiming at complementing, instead of replacing, human intelligence. In particular, we provide solutions for single-objective and multi-objective optimization and showcase the challenges and potential of novel interfaces featuring large language models. Finally, there are application areas that rely on numerical simulators, often related to earth observations, they tend to be particularly high-impact and address important challenges such as climate change and crop life cycles. We commit to coupling these physical simulators with (Auto)ML solutions towards a physics-aware AI. Specifically, in precision farming, we design a smart irrigation platform that: allows real-time monitoring of soil moisture, predicts future moisture values, and estimates water demand to schedule the irrigation.
Resumo:
Il quark-gluon plasma (QGP) è uno stato della materia previsto dalla cromodinamica quantistica. L’esperimento ALICE a LHC ha tra i suoi obbiettivi principali lo studio della materia fortemente interagente e le proprietà del QGP attraverso collisioni di ioni pesanti ultra-relativistici. Per un’esaustiva comprensione di tali proprietà, le stesse misure effettuate su sistemi collidenti più piccoli (collisioni protone-protone e protone-ione) sono necessarie come riferimento. Le recenti analisi dei dati raccolti ad ALICE hanno mostrato che la nostra comprensione dei meccanismi di adronizzazione di quark pesanti non è completa, perchè i dati ottenuti in collisioni pp e p-Pb non sono riproducibili utilizzando modelli basati sui risultati ottenuti con collisioni e+e− ed ep. Per questo motivo, nuovi modelli teorici e fenomenologici, in grado di riprodurre le misure sperimentali, sono stati proposti. Gli errori associati a queste nuove misure sperimentali al momento non permettono di verificare in maniera chiara la veridicità dei diversi modelli proposti. Nei prossimi anni sarà quindi fondamentale aumentare la precisione di tali misure sperimentali; d’altra parte, stimare il numero delle diverse specie di particelle prodotte in una collisione può essere estremamente complicato. In questa tesi, il numero di barioni Lc prodotti in un campione di dati è stato ottenuto utilizzando delle tecniche di machine learning, in grado di apprendere pattern e imparare a distinguere candidate di segnale da quelle di fondo. Si sono inoltre confrontate tre diverse implementazioni di un algoritmo di Boosted Decision Trees (BDT) e si è utilizzata quella più performante per ricostruire il barione Lc in collisioni pp raccolte dall’esperimento ALICE.
Resumo:
A partire dagli anni ‘40, l'uso della traduzione automatica ha iniziato a rappresentare un soggetto fondamentale nella traduzione, costituendo ancora ad oggi il centro di numerose ricerche e studi. In seguito alla diffusione della tecnologia informatica e del World Wide Web, iniziarono a essere disponibili sistemi commerciali di traduzione automatica. In questo periodo, divennero comuni diversi software di traduzione automatica gratuiti, fino a quando, alla fine degli anni 2000, si assistette infine allo sviluppo di una nuova tecnologia di apprendimento automatico neurale, basata sul funzionamento della mente umana. Il presente lavoro si concentra sulla valutazione della qualità della traduzione automatica neurale attraverso l'analisi e il confronto di sette sistemi, ovvero Google, Systran, Prompt, Microsoft, Yandex, ModernMT e Deepl, impiegati nel settore finanziario per la coppia linguistica inglese-italiano. Il primo capitolo tratta la storia della traduzione automatica, fornendo una breve descrizione delle diverse architetture, dei loro ambiti di utilizzo e della valutazione dei sistemi. Il secondo capitolo introduce il concetto di post-editing insieme agli obiettivi e le problematiche che lo caratterizzano. Il terzo capitolo presenta il progetto Intento, seguito da una breve panoramica dei sistemi di traduzione automatica analizzati. Nel quarto capitolo viene delineato il dominio finanziario, concentrandosi sui diversi ambiti che si sono intersecati con esso nell’ambito dello studio svolto. Il quinto e ultimo capitolo riguarda l'analisi dei segmenti tradotti, preceduta dalla definizione dei parametri scelti per la valutazione. L'ultima parte del capitolo illustra una sintesi dei risultati ottenuti e alcune considerazioni finali.