986 resultados para renin angiotensin system
Resumo:
Here we investigated the possible association between the carboxypeptidase A (CPA)-like activity of the rat mesenteric arterial bed (MAB) perfusate and the ability of this fluid of forming angiotensin (Ang) 1-9 and Ang 1-7 upon incubation with Ang I and Ang II, respectively. Initially, we observed that anion exchange chromatography of the perfusate would consistently split the characteristic Z-Val-Phe-hydrolyzing activity of CPA-like enzymes into five distinct peaks, whose proteolytic activities were then determined using also Ang I and Ang II as substrates. The resulting proteolytic profile for each peak indicated that rat MAB perfusate contains a complex mixture of carboxypeptidases; tentatively, five carboxypeptidases were distinguished based on their substrate preferences toward Z-Val-Phe. Ang I and Ang II. The respective reactions, namely, Z-Val-Phe cleavage, Ang I to Ang 1-9 conversion and Ang II to Ang 1-7 conversion, were inhibited by 1,10-phenanthroline and nearly fully blocked by potato carboxypeptidase inhibitor. Also, all the CPA-like activity peaks prepared by anion exchange chromatography were tested negative for contaminating Ang I-converting enzyme-2, cathepsin A and prolylcarboxypeptidase. Overall, our results indicate that rat MAB perfusate contains a multiplicity of Ang I and Ang II-processing CPA-like enzymes whose proteolytic specificities suggest they might perform peculiar regulatory roles in the local resin-angiotensin system. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Resistant hypertension (RH) is the maintenance of elevated blood pressure concurrent with the use of three different antihypertensive drugs, one of which is a diuretic. The Renin-Angiotensin-Aldosterone System plays a major role in volume-dependent hypertension. Therefore, its components are interesting targets for genetic association studies. This work focused on the -344 C/T polymorphism in the CYP11b2 gene, which encodes aldosterone synthase. This work evaluates the association between T allele and resistance to anti-hypertensive treatment. Genotyping analysis included 88 subjects with RH, 142 who were responsive to anti-hypertensive treatment and 110 subjects as a control group. Plasmatic concentrations of aldosterone, renin and cortisol, carotid intima-media thickness and carotid-femoral pulse wave velocity were assessed in a smaller subset of hypertensive patients. An association was found between T allele and hypertension (P < 0.005), but there was no difference in allele frequencies between both hypertensive groups. There was no difference in plasmatic parameters either, in remodeling indicators between the genotypic groups.
Resumo:
The vagus nerve is an important component of the efferent arm of the baroreflex. Blood pressure levels as well as baroreflex control of circulation are significantly different in male and female spontaneously hypertensive rats (SHR). We proposed to investigate the morphometric differences between genders using the vagus nerve of SHR. Adult animals (20 weeks old) were anesthetized and had their arterial pressure (AP) and heart rate (HR) recorded by a computerized system. The rats were then systemically perfused with a fixative solution and had their cervical vagi nerves prepared for light microscopy. Proximal and distal segments of the left and right vagi nerves were evaluated for morphometric parameters including fascicle area and diameter, myelinated fiber number, density, area and diameter. Comparisons were made between sides and segments on the same gender as well as between genders. Differences were considered significant when p<0.05. Male SHR had significantly higher AP and HR. Morphometric data showed no differences between the same levels of both sides and between segments on the same side for male and female rats. In addition, no significant morphometric differences were observed when genders were compared. This is the first description of vagus nerve morphometry in SHR indicating that gender differences in AP and HR cannot be attributed to dissimilarities in vagal innervation of the heart. These data provide a morphological basis for further studies involving functional investigations of the efferent arm of the baroreflex in hypertension. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Introduction Among individuals with a history of myocardial infarction (MI), higher levels of blood pressure (BP) are associated with increased long-term risks of death from coronary heart disease. Treatment with a BP-lowering regimen, based on omapatrilat may result in greater clinical benefits than treatment with a regimen based on a regular angiotensin-converting enzyme (ACE) inhibitor because of more favourable effects on the renin-angiotensin-aldosterone system. Methods Seven hundred and twenty-three clinically stable patients with a history of MI or unstable angina, and a mean entry BP of 134/77 mmHg, were randomised to six months treatment with omapatrilat 40 mg, omapatrilat 20 mg, or matching placebo. Results After six months, mean BP levels (systolic/diastolic) in the omapatrilat 40 mg group were reduced by 4.3/ 2.9 mmHg (95% confidence interval 1.3 to 7.2/1.2 to 4.6). Mean BP levels in the omapatrilat 20 mg group were reduced by 4.6/1.0 mmHg (1.6 to 7.6/-0.7 to 2.6) in comparison with the placebo group. Both doses of omapatrilat also produced significant decreases in plasma ACE activity and significant increases in levels of plasma renin activity, atrial natriuretic peptide, endothelin and homocysteine (p
Resumo:
1. The pharmacokinetics of most ACE inhibitors have been evaluated indirectly by the measurements of plasma ACE activity and circulating levels of angiotensin I and II. 2. Although plasma ACE activity is very useful to study the degree and the time-course of ACE inhibition, one has to be aware that very different results can be obtained depending on the substrate employed in the assay. It is therefore impossible to compare the results of different inhibitors unless an identical methodology is used. 3. A clear dissociation between plasma angiotensin II levels and the antihypertensive effects of ACE inhibitors has been reported. This observation is in part linked to problems with the measurement of angiotensin II. New methods of determination of plasma angiotensin II have now allowed demonstration of the complete disappearance of plasma angiotensin II following acute ACE inhibition. During chronic treatment, however, angiotensin II generation is effectively blocked only during part of the day, but blood pressure remains controlled permanently. 4. Among the different pharmacokinetic characteristics of ACE inhibitors presently available, the route of excretion and to a lesser degree the half-life appear to be the most clinically relevant. However, the importance of the ability of ACE inhibitors to inhibit tissue renin-angiotensin systems remains to be defined.
Resumo:
Angiotensin II (AII), a product of rennin-angiotensin system, exerts an important role on the function of immune system cells. In this study, the effect of AII on the phagocytic activity of mouse peritoneal macrophages was assessed. Mice peritoneal macrophages were cultured for 48 h and the influence of different concentrations of AII (10-14 to 10-7 M) and/or losartan, 10-16 to 10-6 M), an AT1 angiotensin receptor antagonist, on phagocytic activity and superoxide anion production was determined. Dimethylthiazoldiphenyltetrazolium bromide reduction and the nucleic acid content were used to assess the cytotoxicity of losartan. A stimulatory effect on phagocytic activity (P < 0.05) was observed with 10-13 M and 10-12 M AII concentrations. The addition of losartan (up to10-14 M) to the cell cultures blocked (P < 0.001) the phagocytosis indicating the involvement of AT1 receptors. In contrast, superoxide anion production was not affected by AII or losartan. The existence of AT1 and AT2 receptors in peritoneal macrophages was demonstrated by immunofluorescence microscopy. These results support the hypothesis that AII receptors can modulate murine macrophage activity and phagocytosis, and suggest that AII may have a therapeutic role as an immunomodulatory agent in modifying the host resistance to infection.
Resumo:
Aims/Hypothesis: Glitazones are powerful insulin sensitisers prescribed for the treatment of type 2 diabetes. Their use is, however, associated with fluid retention and an increased risk of congestive heart failure. We previously demonstrated that pioglitazone increases proximal sodium reabsorption in healthy volunteers. This study examines the effects of pioglitazone on renal sodium handling in individuals prone to insulin resistance, i.e. those with diabetes and/or hypertension. Methods: In this double-blind randomised placebo-controlled four-way crossover study, we examined the effects of pioglitazone (45 mg daily during 6 weeks) or placebo on renal, systemic and hormonal responses to changes in sodium intake in 16 individuals, eight with type 2 diabetes and eight with hypertension. Results: Pioglitazone was associated with a rapid increase in body weight and an increase in diurnal proximal sodium reabsorption, without any change in renal haemodynamics or in the modulation of the renin-angiotensin aldosterone system to changes in salt intake. A compensatory increase in brain natriuretic peptide levels was observed. In spite of sodium retention, pioglitazone dissociated the blood-pressure response to salt and abolished salt sensitivity in salt-sensitive individuals. Conclusions/Interpretation: Pioglitazone increases diurnal proximal sodium retention in diabetic and hypertensive individuals. These effects cause fluid retention and may contribute to the increased incidence of congestive heart failure with glitazones.
Resumo:
Purpose of reviewAtherosclerotic renal artery stenosis (ARAS) usually occurs in patients at high risk of vascular disease, and is associated with increased mortality. The primary goals of ARAS treatment include the control of blood pressure (BP), the improved renal function, and the benefit on cardiovascular events. Although medical therapy remains the standard approach to the management of ARAS, percutaneous transluminal renal angioplasty (PTRA) revascularization can be a therapeutic option under certain conditions.Recent findingsRecent evidence confirms that ARAS increases cardiovascular risk, independent of BP and renal function. This suggests that revascularization might potentially improve overall prognosis, but no data are available currently. In cases of significant ARAS, the accepted indications for PTRA are uncontrollable hypertension, gradual or acute renal function decline with the use of agents blocking the renin-angiotensin-aldosterone system, and recurrent flash pulmonary edema. The key point of treatment success remains in all cases a careful patient selection.SummaryAlthough the atherosclerotic lesions of the renal arteries tend to progress over time, the anatomical lesion progression is not always associated with changes in BP. Furthermore, a poor correlation was noted between the degree of anatomic stenosis and glomerular filtration rate. The high cardiovascular risk warrants aggressive pharmacological treatment to prevent progression of the generalized vascular disorder. Ongoing trials will show whether PTRA revascularization has added, long-term effects on BP, renal function, and cardiovascular prognosis. With or without PTRA revascularization, medical therapy using antihypertensive agents, statins, and aspirin is necessary in almost all cases.
Resumo:
1. The haemodynamic and humoral effects of cilazapril, a new angiotensin converting enzyme (ACE) inhibitor, were evaluated in normotensive healthy volunteers. 2. Single oral doses of 1.25, 2.5, 5 and 10 mg of cilazapril inhibited ACE by greater than or equal to 90% and induced the expected pattern of changes of the renin-angiotensin-aldosterone-system. 3. Cilazapril had a long duration of action, since some ACE inhibition was still present 72 h after drug intake. 4. Cilazapril administered intravenously at doses of 5 and 20 micrograms kg-1 for 24 h did not produce any significant effects. 5. During repeated administration of cilazapril for 8 days, no accumulation of cilazaprilat was observed and the clinical tolerance was excellent. 6. In normal volunteers, cilazapril administered orally acts as a potent inhibitor of converting enzyme.
Resumo:
Background: Cerebral autoregulation (CA) is a protective mechanism which maintains the steadiness of the cerebral blood flow (CBF) through a broad range of systemic blood pressure (BP). Acute hypertension has been shown to reduce the cerebrovascular adaptation to BP variations. However, it is still unknown whether CA is impaired in chronic hypertension. This study evaluated whether a strict control of BP affects the CA in patients with chronic hypertension, and compared a valsartan-based regimen to a regimen not inhibiting the renin-angiotensin-aldosterone system (non-RAAS). Methods: Eighty untreated patients with isolated systolic hypertension were randomized to valsartan 320 mg or to a non-RAAS regimen during 6 months. The medication was upgraded to obtain BP <140/90 mm Hg. Continuous recordings of arterial BP and CBF velocity (transcranial Doppler) were performed during periods of 5 minutes, at rest, and at different levels of alveolar CO(2) pressure provided by respiratory maneuvers. The dominant frequency of CBF oscillations was determined for each patient. Dynamic CA was measured as the mean phase shift between BP and CBF by cross-spectral analysis in the medium frequency and in the dominant CBF frequency. Results: Mean ambulatory 24-hour BP fell from 144/87 to 127/79 mm Hg in the valsartan group and from 144/87 to 134/81 mm Hg in the non-RAAS group (p = 0.13). Both groups had a similar reduction in the central BP and in the carotido-femoral pulse wave velocity. The average phase shift between BP fluctuations and CBF response at rest was normal at randomization (1.82 ± 0.08 s), which is considered a preserved autoregulation and increased to 1.91 ± 0.12 s at the end of study (p = 0.45). The comparison of both treatments showed no significant difference (-0.01 ± 0.17 s vs. 0.16 ± 0.16 s, p = 0.45) for valsartan versus non-RAAS groups. The plasmatic level of glycosylated hemoglobin decreased in the valsartan arm compared to the non-RAAS arm (-0.23 ± 0.06 vs. -0.08 ± 0.07%, p = 0.07). Conclusions: In elderly hypertensive men with isolated chronic systolic hypertension, CA seems efficient at baseline and is not significantly affected by 6 months of BP-lowering treatment. This suggests that the preventive effects of BP medication against stroke are not mediated through a restoration of the CA.
Resumo:
A synthetic human atrial natriuretic peptide of 26 aminoacids [human (3-28)ANP or hANP] was infused into normal male volunteers. Six subjects were infused for 4 h at 1-wk intervals with either hANP at the rate of 0.5 or 1.0 microgram/min or its vehicle in a single-blind randomized order. Human (3-28)ANP at the dose of 0.5 microgram/min raised immunoreactive plasma ANP levels from 104 +/- 17 to 221 +/- 24 pg/ml (mean +/- SEM), but it induced no significant change in blood pressure, heart rate, effective renal plasma flow, glomerular filtration rate, or renal electrolyte excretion. At the rate of 1.0 microgram/min, human (3-28)ANP increased immunoreactive plasma ANP levels from 89 +/- 12 to 454 +/- 30 pg/ml. It reduced effective renal plasma flow from 523 +/- 40 to 453 +/- 38 ml/min (P less than 0.05 vs. vehicle), but left glomerular filtration rate unchanged. Natriuresis rose from 207 +/- 52 to 501 +/- 69 mumol/min (P less than 0.05 vs. vehicle) and urinary magnesium excretion from 3.6 +/- 0.5 to 5.6 +/- 0.5 mumol/min (P less than 0.01 vs. vehicle). The excretion rate of the other electrolytes, blood pressure, and heart rate were not significantly modified. At both doses, human (3-28)ANP tended to suppress the activity of the renin-angiotensin-aldosterone system. In 3 additional volunteers, the skin blood flow response to human (3-28)ANP, infused for 4 h at the rate of 1.0 microgram/min, was studied by means of a laser-doppler flowmeter. The skin blood flow rose during the first 2 h of peptide administration, then fell progressively to values below baseline. After the infusion was discontinued, it remained depressed for more than 2 h. Thus, in normal volunteers, human (3-28)ANP at the dose of 1.0 microgram/min produced results similar to those obtained previously with rat (3-28)ANP. It enhanced natriuresis without changing the glomerular filtration rate while effective renal plasma flow fell. It also induced a transient vasodilation of the skin vascular bed.
Resumo:
Overweight and obesity are associated with arterial hypertension. Given the large increase in the obesity prevalence worldwide, the number of obese patients with hypertension is likely to increase substantially in the near future. Overweight and obese patients are exposed to an important metabolic and cardiovascular risk. The understanding of the mechanisms linking obesity to hypertension is important for specific prevention and therapy in this population. There is some evidence that obesity is associated with an increased aldosterone level. To date, 2 mechanisms may explain the interaction of fat tissue with the renin-angiotensin-aldosterone system, and therefore explain, in part, obesity-related hypertension. First, human adipose tissue produces several components of the renin-angiotensin-aldosterone system, mainly adipose tissue-derived angiotensinogen. Second, increased fatty acid production in the obese patient, especially nonesterified fatty acids, might stimulate aldosterone production, independent of renin. A better understanding of these mechanisms might have implications for the management of hypertension in overweight and obese patients. Because aldosterone also is associated with blood glucose and blood lipids, selective aldosterone blockade may represent a particularly attractive therapeutic strategy in obese patients with a clustering of cardiovascular risk factors.
Resumo:
BACKGROUND: The stimulation of efferent renal sympathetic nerve activity induces sequential changes in renin secretion, sodium excretion, and renal hemodynamics that are proportional to the magnitude of the stimulation of sympathetic nerves. This study in men investigated the sequence of the changes in proximal and distal renal sodium handling, renal and systemic hemodynamics, as well as the hormonal profile occurring during a sustained activation of the sympathetic nervous system induced by various levels of lower body negative pressure (LBNP). METHODS: Ten healthy subjects were submitted to three levels of LBNP ranging between 0 and -22.5 mm Hg for one hour according to a triple crossover design, with a minimum of five days between each level of LBNP. Systemic and renal hemodynamics, renal water and sodium handling (using the endogenous lithium clearance technique), and the neurohormonal profile were measured before, during, and after LBNP. RESULTS: LBNP (0 to -22.5 mm Hg) induced an important hormonal response characterized by a significant stimulation of the sympathetic nervous system and gradual activations of the vasopressin and the renin-angiotensin systems. LBNP also gradually reduced water excretion and increased urinary osmolality. A significant decrease in sodium excretion was apparent only at -22.5 mm Hg. It was independent of any change in the glomerular filtration rate and was mediated essentially by an increased sodium reabsorption in the proximal tubule (a significant decrease in lithium clearance, P < 0.05). No significant change in renal hemodynamics was found at the tested levels of LBNP. As observed experimentally, there appeared to be a clear sequence of responses to LBNP, the neurohormonal response occurring before the changes in water and sodium excretion, these latter preceding any change in renal hemodynamics. CONCLUSIONS: These data show that the renal sodium retention developing during LBNP, and thus sympathetic nervous stimulation, is due mainly to an increase in sodium reabsorption by the proximal segments of the nephron. Our results in humans also confirm that, depending on its magnitude, LBNP leads to a step-by-step activation of neurohormonal, renal tubular, and renal hemodynamic responses.
Resumo:
Aldosterone promotes electrogenic sodium reabsorption through the amiloride-sensitive epithelial sodium channel (ENaC). Here, we investigated the importance of ENaC and its positive regulator channel-activating protease 1 (CAP1/Prss8) in colon. Mice lacking the αENaC subunit in colonic superficial cells (Scnn1a(KO)) were viable, without fetal or perinatal lethality. Control mice fed a regular or low-salt diet had a significantly higher amiloride-sensitive rectal potential difference (∆PDamil) than control mice fed a high-salt diet. In Scnn1a(KO) mice, however, this salt restriction-induced increase in ∆PDamil did not occur, and the circadian rhythm of ∆PDamil was blunted. Plasma and urinary sodium and potassium did not change with regular or high-salt diets or potassium loading in control or Scnn1a(KO) mice. However, Scnn1a(KO) mice fed a low-salt diet lost significant amounts of sodium in their feces and exhibited high plasma aldosterone and increased urinary sodium retention. Mice lacking the CAP1/Prss8 in colonic superficial cells (Prss8(KO)) were viable, without fetal or perinatal lethality. Compared with controls, Prss8(KO) mice fed regular or low-salt diets exhibited significantly reduced ∆PDamil in the afternoon, but the circadian rhythm was maintained. Prss8(KO) mice fed a low-salt diet also exhibited sodium loss through feces and higher plasma aldosterone levels. Thus, we identified CAP1/Prss8 as an in vivo regulator of ENaC in colon. We conclude that, under salt restriction, activation of the renin-angiotensin-aldosterone system in the kidney compensated for the absence of ENaC in colonic surface epithelium, leading to colon-specific pseudohypoaldosteronism type 1 with mineralocorticoid resistance without evidence of impaired potassium balance.
Resumo:
Hemodynamic and biochemical effects of the new renin inhibitor CGP 38560A (molecular weight 826) were tested in 15 healthy volunteers after a single-blind, randomized, placebo-controlled protocol. At a 2-week interval, groups of five subjects received a 30-minute infusion of either 5% dextrose or CGP 38560A 50, 125, or 250 micrograms/kg. Blood pressure, heart rate, plasma renin activity, active and total renin, angiotensin-(1-8)octapeptide (angiotensin II), and aldosterone were sequentially measured up to 3 hours from the onset of the infusion. There was no consistent change in blood pressure or heart rate. Plasma renin activity and angiotensin II decreased dose dependently, and peak suppression was observed at the end of the infusion of CGP 38560A and after the 250-micrograms/kg dose. Plasma renin activity fell from 1.0 +/- 0.19 (mean +/- SEM) to less than 0.05 ng/ml/hr in all five subjects (p less than 0.001), and angiotensin II fell from 7.7 +/- 1.2 to 2.6 +/- 0.9 femtomole/ml (p less than 0.01). Active renin rose fourfold from 24 +/- 1.9 to 98 +/- 14 pg/ml (p less than 0.001) at the end of the infusion of the high dose. Plasma angiotensin II returned toward its initial values much faster than plasma renin activity and active renin. In conclusion, CGP 38560A was well tolerated. It induced a dose-dependent decrease in angiotensin II and plasma renin activity and a long-lasting and dose-dependent rise in active renin. The doses used did not reduce plasma angiotensin II maximally despite reduction of plasma renin activity to unmeasurable levels.(ABSTRACT TRUNCATED AT 250 WORDS)