918 resultados para reduction of organic compounds


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous and comparable atmospheric monitoring programs to study the transport and occurrence of persistent organic pollutants (POPs) in the atmosphere of remote regions is essential to better understand the global movement of these chemicals and to evaluate the effectiveness of international control measures. Key results from four main Arctic research stations, Alert (Canada), Pallas (Finland), Storhofdi (Iceland) and Zeppelin (Svalbard/Norway), where long-term monitoring have been carried out since the early 1990s, are summarized. We have also included a discussion of main results from various Arctic satellite stations in Canada, Russia, US (Alaska) and Greenland which have been operational for shorter time periods. Using the Digital Filtration temporal trend development technique, it was found that while some POPs showed more or less consistent declines during the 1990s, this reduction is less apparent in recent years at some sites. In contrast, polybrominated diphenyl ethers (PBDEs) were still found to be increasing by 2005 at Alert with doubling times of 3.5 years in the case of deca-BDE. Levels and patterns of most POPs in Arctic air are also showing spatial variability, which is typically explained by differences in proximity to suspected key source regions and long-range atmospheric transport potentials. Furthermore, increase in worldwide usage of certain pesticides, e.g. chlorothalonil and quintozene, which are contaminated with hexachlorobenzene (HCB), may result in an increase in Arctic air concentration of HCB. The results combined also indicate that both temporal and spatial patterns of POPs in Arctic air may be affected by various processes driven by climate change, such as reduced ice cover, increasing seawater temperatures and an increase in biomass burning in boreal regions as exemplified by the data from the Zeppelin and Alert stations. Further research and continued air monitoring are needed to better understand these processes and its future impact on the Arctic environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on 13 published porewater H2S and sulphate profiles the amount of H2S escaping from non-bioturbated shales varies between some few % to 45% of the amount of bacterially generated H2S. This finding permits calculation of the original organic carbon (TOCor) content of immature nonbioturbated shales using TOC and sulphur content data. In two immature non-bioturbated sequences from Hungary (Toarcian and Oligocene) the first-order correlation between HI and TOC/TOCor was found to be stronger than that between HI and TOC, indicating that sulphate reduction was the leading process both in decrease in TOC content and degradation of kerogen source potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pleisto-Pliocene hemipelagic and diatomaceous mud was recovered from Deep Sea Drilling Project (DSDP) Sites 474 through 481 in the Gulf of California. The organic matter is mostly marine and mainly derived from diatomaceous protoplasm. We found some continental organic matter in sediments near the bottom basalts or near dolerites (Holes 474A and 478). The organic matter in most of the samples is in an early stage of evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of upper Pliocene to Pleistocene sediment samples from DSDP Sites 582 and 583 (Nankai Trough, active margin off Japan) were investigated by organic geochemical methods including organic carbon determination, Rock- Eval pyrolysis, gas chromatography of extractable hydrocarbons, and kerogen microscopy. The organic carbon content is fairly uniform and moderately low (0.35 to 0.77%) at both sites, although accompanied by high sedimentation rates. The low organic matter concentrations are the result of the combined effect of several factors: low bioproductivity, oxic depositional environment, and dilution with lithogenic material. Organic petrography revealed a mixture of three maceral types: (1) fresh, green fluorescent alginites of aquatic origin probably transported by turbidites from the shelf edge, (2) gelified huminites and paniculate liptinites derived from the erosion of unconsolidated peat, and (3) highly reflecting inertinites derived from continental erosion. By a combination of organic petrography and Rock-Eval pyrolysis results, the organic matter is characterized as mainly type III kerogen with a slight tendency to a mixed type II-III. During Rock-Eval pyrolysis, a mineral matrix effect on the generated hydrocarbons was observed. The organic matter in all sediments has a low level of maturity (below 0.45% Rm) and has not yet reached the onset of thermal hydrocarbon generation according to several geochemical maturation parameters. This low maturity is in contrast to anomalously high extract yields at both sites and large hydrocarbon proportions in the extracts at Site 583. This contrast may be due to early generation of polar compounds and perhaps redistribution of hydrocarbons caused by subduction tectonics. Carbon isotope data of the interstitial hydrocarbon gases indicate their origin from bacterial degradation of organic matter, although only very few bacterially degraded maceral components were detected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pore fluid calcium isotope, calcium concentration and strontium concentration data are used to measure the rates of diagenetic dissolution and precipitation of calcite in deep-sea sediments containing abundant clay and organic material. This type of study of deep-sea sediment diagenesis provides unique information about the ultra-slow chemical reactions that occur in natural marine sediments that affect global geochemical cycles and the preservation of paleo-environmental information in carbonate fossils. For this study, calcium isotope ratios (d44/40Ca) of pore fluid calcium from Ocean Drilling Program (ODP) Sites 984 (North Atlantic) and 1082 (off the coast of West Africa) were measured to augment available pore fluid measurements of calcium and strontium concentration. Both study sites have high sedimentation rates and support quantitative sulfate reduction, methanogenesis and anaerobic methane oxidation. The pattern of change of d44/40Ca of pore fluid calcium versus depth at Sites 984 and 1082 differs markedly from that of previously studied deep-sea Sites like 590B and 807, which are composed of nearly pure carbonate sediment. In the 984 and 1082 pore fluids, d44/40Ca remains elevated near seawater values deep in the sediments, rather than shifting rapidly toward the d44/40Ca of carbonate solids. This observation indicates that the rate of calcite dissolution is far lower than at previously studied carbonate-rich sites. The data are fit using a numerical model, as well as more approximate analytical models, to estimate the rates of carbonate dissolution and precipitation and the relationship of these rates to the abundance of clay and organic material. Our models give mutually consistent results and indicate that calcite dissolution rates at Sites 984 and 1082 are roughly two orders of magnitude lower than at previously studied carbonate-rich sites, and the rate correlates with the abundance of clay. Our calculated rates are conservative for these sites (the actual rates could be significantly slower) because other processes that impact the calcium isotope composition of sedimentary pore fluid have not been included. The results provide direct geochemical evidence for the anecdotal observation that the best-preserved carbonate fossils are often found in clay or organic-rich sedimentary horizons. The results also suggest that the presence of clay minerals has a strong passivating effect on the surfaces of biogenic carbonate minerals, slowing dissolution dramatically even in relation to the already-slow rates typical of carbonate-rich sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon and hydrogen concentrations and isotopic compositions were measured in 19 samples from altered oceanic crust cored in ODP/IODP Hole 1256D through lavas, dikes down to the gabbroic rocks. Bulk water content varies from 0.32 to 2.14 wt% with dD values from -64per mil to -25per mil. All samples are enriched in water relative to fresh basalts. The dD values are interpreted in terms of mixing between magmatic water and another source that can be either secondary hydrous minerals and/or H contained in organic compounds such as hydrocarbons. Total CO2, extracted by step-heating technique, ranges between 564 and 2823 ppm with d13C values from -14.9per mil to -26.6per mil. As for water, these altered samples are enriched in carbon relative to fresh basalts. The carbon isotope compositions are interpreted in terms of a mixing between two components: (1) a carbonate with d13C = -4.5per mil and (2) an organic compound with d13C = -26.6per mil. A mixing model calculation indicates that, for most samples (17 of 19), more than 75% of the total C occurs as organic compounds while carbonates represent less than 25%. This result is also supported by independent estimates of carbonate content from CO2 yield after H3PO4 attack. A comparison between the carbon concentration in our samples, seawater DIC (Dissolved Inorganic Carbon) and DOC (Dissolved Organic Carbon), and hydrothermal fluids suggests that CO2 degassed from magmatic reservoirs is the main source of organic C addition to the crust during the alteration process. A reduction step of dissolved CO2 is thus required, and can be either biologically mediated or not. Abiotic processes are necessary for the deeper part of the crust (>1000 mbsf) because alteration temperatures are greater than any hyperthermophilic living organism (i.e. T > 110 °C). Even if not required, we cannot rule out the contribution of microbial activity in the low-temperature alteration zones. We propose a two-step model for carbon cycling during crustal alteration: (1) when "fresh" oceanic crust forms at or close to ridge axis, alteration starts with hot hydrothermal fluids enriched in magmatic CO2, leading to the formation of organic compounds during Fischer-Tropsch-type reactions; (2) when the crust moves away from the ridge axis, these interactions with hot hydrothermal fluids decrease and are replaced by seawater interactions with carbonate precipitation in fractures. Taking into account this organic carbon, we estimate C isotope composition of mean altered oceanic crust at ? -4.7per mil, similar to the d13C of the C degassed from the mantle at ridge axis, and discuss the global carbon budget. The total flux of C stored in the altered oceanic crust, as carbonate and organic compound, is 2.9 ± 0.4 * 10**12 molC/yr.