568 resultados para pulsar planets
Resumo:
We numerically investigate the long-term dynamics of the Saturnian system by analyzing the Fourier spectra of ensembles of orbits taken around the current orbits of Mimas, Enceladus, Tethys, Rhea and Hyperion. We construct dynamical maps around the current position of these satellites in their respective phase spaces. The maps are the result of a great deal of numerical simulations where we adopt dense sets of initial conditions and different satellite configurations. Several structures associated to the current two-body mean-motion resonances, unstable regions associated to close approaches between the satellites, and three-body mean-motion resonances in the system, are identified in the map. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In the present work we explore regions of distant direct stable orbits around the Moon. First, the location and size of apparently stable regions are searched for numerically, adopting the approach of temporary capture time presented in Vieira Neto & Winter (2001). The study is made in the framework of the planar, circular, restricted three-body problem, Earth-Moon-particle. Regions of the initial condition space whose trajectories are apparently stable are determined. The criterion adopted was that the trajectories do not escape from the Moon during an integration period of 10(4) days. Using Poincare surface of sections the reason for the existence of the two stable regions found is studied. The stability of such regions proved to be due to two families of simple periodic orbits, h1 and h2, and the associated quasi-periodic orbits that oscillate around them. The robustness of the stability of the larger region, h2, is tested with the inclusion of the solar perturbation. The size of the region decreases, but it is still significant in size and can be useful in spacecraft missions.
Resumo:
In a previous work, Vieira Neto & Winter (2001) numerically explored the capture times of particles as temporary satellites of Uranus. The study was made in the framework of the spatial, circular, restricted three-body problem. Regions of the initial condition space whose trajectories are apparently stable were determined. The criterion adopted was that the trajectories do not escape from the planet during an integration of 10(5) years. These regions occur for a wide range of orbital initial inclinations (i). In the present work it is studied the reason for the existence of such stable regions. The stability of the planar retrograde trajectories is due to a family of simple periodic orbits and the associated quasi-periodic orbits that oscillate around them. These planar stable orbits had already been studied (Henon 1970; Huang & Innanen 1983). Their results are reviewed using Poincare surface of sections. The stable non-planar retrograde trajectories, 110 degrees less than or equal to i < 180
Resumo:
In the present work we numerically simulated the motion of particles coorbital to a small satellite under the Poynting-Robertson light drag effect in order to verify the symmetry suggested by Dermott et al. (1979, 1980) on their ring confinement model. The results reveal a more complex scenario, especially for very small particles (micrometer sizes), which present chaotic motion. Despite the complexity of the trajectories the particles remain confined inside the coorbital region. However, the dissipative force caused by the solar radiation also includes the radiation pressure component which can change this configuration. Our results show that the inclusion of the radiation pressure, which is not present in the original confinement model, can destroy the configuration in a time much shorter than the survival time predicted for a dust particle in a horseshoe orbit with a satellite.
Resumo:
Since the Voyager flybys, embedded moonlets have been proposed to explain some of the surprising structures observed in Saturn's narrow F ring. Experiments conducted with the Cassini spacecraft support this suggestion. Images of the F ring show bright compact spots, and seven occultations of stars by the F ring, monitored by ultraviolet and infrared experiments, revealed nine events of high optical depth. These results point to a large number of such objects, but it is not clear whether they are solid moonlets or rather loose particle aggregates. Subsequent images suggested an irregular motion of these objects so that a determination of their orbits consistent with the F ring failed. Some of these features seem to cross the whole ring. Here we show that these observations are explained by chaos in the F ring driven mainly by the 'shepherd' moons Prometheus and Pandora. It is characterized by a rather short Lyapunov time of about a few hundred orbital periods. Despite this chaotic diffusion, more than 93 per cent of the F-ring bodies remain confined within the F ring because of the shepherding, but also because of a weak radial mobility contrasted by an effective longitudinal diffusion. This chaotic stirring of all bodies involved prevents the formation of 'propellers' typical of moonlets, but their frequent ring crossings explain the multiple radial 'streaks' seen in the F ring. The related 'thermal' motion causes more frequent collisions between all bodies which steadily replenish F-ring dust and allow for ongoing fragmentation and re-accretion processes (ring recycling).
Resumo:
The photospheres of stars hosting planets have larger metallicity than stars lacking planets. This could be the result of a metallic star contamination produced by the bombarding of hydrogen-deficient solid bodies. In the present work we study the possibility of an earlier metal enrichment of the photospheres by means of impacting planetesimals during the first 20-30 Myr. Here we explore this contamination process by simulating the interactions of an inward migrating planet with a disc of planetesimal interior to its orbit. The results show the percentage of planetesimals that fall on the star. We identified the dependence of the planet's eccentricity (e(p)) and time-scale of migration (tau) on the rate of infalling planetesimals. For very fast migrations (tau= 10(2) and 10(3) yr) there is no capture in mean motion resonances, independently of the value of e(p). Then, due to the planet's migration the planetesimals suffer close approaches with the planet and more than 80 per cent of them are ejected from the system. For slow migrations (tau= 10(5)and 10(6) yr) the percentage of collisions with the planet decreases with the increase of the planet's eccentricity. For e(p) = 0 and 0.1 most of the planetesimals were captured in the 2:1 resonance and more than 65 per cent of them collided with the star. Whereas migration of a Jupiter mass planet to very short pericentric distances requires unrealistic high disc masses, these requirements are much smaller for smaller migrating planets. Our simulations for a slowly migrating 0.1 M-Jupiter planet, even demanding a possible primitive disc three times more massive than a primitive solar nebula, produces maximum [Fe/H] enrichments of the order of 0.18 dex. These calculations open possibilities to explain hot Jupiter exoplanet metallicities.
Resumo:
The Cassini-Huygens arrival into the Saturnian system brought a large amount of data about the satellites and rings. Two diffuse rings were found in the region between the A ring and Prometheus. R/2004 S1 is coorbital to Atlas and R/2004 S2 is close to Prometheus. In this work we analysed the closest approach between Prometheus and both rings. As a result we found that the satellite removes particles from R/2004 S2 ring. Long-term numerical simulations showed that some particles can cross the F ring region . The well known region of the F ring, where small satellites are present and particles are being taking from the ring, gains a new insight with the presence of particles from R/2004 S2 ring. The computation of the Lyapunov Characteristic Exponent reveled that the R/2004 S2 ring lies in a chaotic region while R/2004 S1 ring and Atlas are in a stable region. Atlas is responsible for the formation of three regimes in the R/2004 S1 ring, as expected for a satellite embedded in a ring.
Resumo:
Analytical models for studying the dynamical behaviour of objects near interior, mean motion resonances are reviewed in the context of the planar, circular, restricted three-body problem. The predicted widths of the resonances are compared with the results of numerical integrations using Poincare surfaces of section with a mass ratio of 10(-3) (similar to the Jupiter-Sun case). It is shown that for very low eccentricities the phase space between the 2:1 and 3:2 resonances is predominantly regular, contrary to simple theoretical predictions based on overlapping resonance. A numerical study of the 'evolution' of the stable equilibrium point of the 3:2 resonance as a function of the Jacobi constant shows how apocentric libration at the 2:1 resonance arises; there is evidence of a similar mechanism being responsible for the centre of the 4:3 resonance evolving towards 3:2 apocentric libration. This effect is due to perturbations from other resonances and demonstrates that resonances cannot be considered in isolation. on theoretical grounds the maximum libration width of first-order resonances should increase as the orbit of the perturbing secondary is approached. However, in reality the width decreases due to the chaotic effect of nearby resonances.
Resumo:
Throughout late 1998 and early 1999, the International GLONASS Experiment (IGEX) has delivered the first comprehensive inter-continental dual frequency GLONASS data set. This experiment represents the first opportunity to assess how a second global satellite positioning system could complement existing CPS geodetic infrastructure. Based on analysis of a three station network of IGEX stations from Southern Hemisphere IGEX stations, this paper discusses the internal and external precision of long baseline GPS, GLONASS and combined GPS/GLONASS solutions, and the possible contribution of GLONASS to future regional-scale geodetic work.
Resumo:
In the present work is analyzed the contribution of the Moon on the collisional process of the Earth with asteroids (NEOs). The dynamical system adopted is the restricted four-body problem Sun-Earth-Moon-particle. Using a simple analytical approach one can verify that, the orbit of an object can be significantly affected by the Moon's gravitational field when their relative velocity is smaller than 5 km/s. Therefore, the present work is based on hypothetical asteroids whose velocities relative to Moon are of the order of 1 km/s. In fact, there are several real objects (NEOs) with such velocities at the point they cross the Earth's orbit. The net results obtained indicate that the Moon helps to avoid collisions (2.6%) more than it contributes to extra collisions (0.6%). (C) 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
The irregular satellites of Jupiter are believed to be captured asteroids or planetesimals. In the present work is studied the direction of capture of these objects as a function of their orbital inclination. We performed numerical simulations of the restricted three-body problem, Sun-Jupiter-particle, taking into account the growth of Jupiter. The integration was made backward in time. Initially, the particles have orbits as satellites of Jupiter, which has its present mass. Then, the system evolved with Jupiter losing mass and the satellites escaping from the planet. The reverse of the escape direction corresponds to the capture direction. The results show that the Lagrangian points L1 and L2 mainly guide the direction of capture. Prograde satellites are captured through these two gates with very narrow amplitude angles. In the case of retrograde satellites, these two gates are wider. The capture region increases as the orbital inclination increases. In the case of planar retrograde satellites the directions of capture cover the whole 360 degrees around Jupiter. We also verified that prograde satellites are captured earlier in actual time than retrograde ones.
Resumo:
In this paper, we have investigated a region of direct stable orbits around the Moon, whose stability is related to the H2 Family of periodic orbits and to the quasi-periodic orbits that oscillate around them. The stability criteria adopted was that the path did not escape from the Moon during an integration period of 1000 days (remaining with negative two-body Moon-probe orbital energy during this period). Considering the three-dimensional four-body Sun-Earth-Moon-probe problem, we investigated the evolution of the size of the stability region, taking into account the eccentricity of the Earth's orbit, the eccentricity and inclination of the Moon's orbit, and the solar radiation pressure on the probe. We also investigated the evolution of the region's size and its location by varying the inclination of the probe's initial osculating orbit relative to the Moon's orbital plane between 0 degrees and 180 degrees. The size of the stability region diminishes; nevertheless, it remains significant for 0 <= i <= 25 degrees and 35 degrees <= i <= 45 degrees. The orbits of this region could be useful for missions by space vehicles that must remain in orbit around the Moon for periods of up to 1000 days, requiring low maintenance costs. (c) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)