989 resultados para phosphorus
Resumo:
Excessive Cladophora growth in the Great Lakes has led to beach fouling and the temporary closure of nuclear power plants and has been associated with avian botulism and the persistence of human pathogens. As the growth-limiting nutrient for Cladophora, phosphorus is the appropriate target for management efforts. Dreissenids (zebra and quagga mussels) have the ability to capture particulate phase phosphorus (otherwise unavailable to Cladophora) and release it in a soluble, available form. The significance of this potential nutrient source is, in part, influenced by the interplay between phosphorus flux from the mussel bed and turbulent mixing in establishing the phosphorus levels to which Cladophora is exposed. It is hypothesized that under quiescent conditions phosphorus will accumulate near the sediment-water interface, setting up vertical phosphorus gradients and favorable conditions for resource delivery to Cladophora. These gradients would be eliminated under conditions of wind mixing, reducing the significance of the dreissenid-mediated nutrient contribution. Soluble reactive phosphorus (SRP) levels were monitored over dreissenid beds (densities on the order of 350•m-2 and 3000∙m-2) at a site 8 m deep in Lake Michigan. Monitoring was based on the deployment of Modified Hesslein Samplers which collected samples for SRP analysis over a distance of 34 cm above the bottom in 2.5 cm intervals. Deployment intervals were established to capture a wind regime (calm, windy) that persisted for an interval consistent with the sampler equilibration time of 7 hours. Results indicate that increased mussel density leads to an increased concentration boundary layer; increased wind speed leads to entrainment of the concentration boundary layer; and increased duration of quiescent periods leads to an increased concentration boundary layer. This concentration boundary layer is of ecological significance and forms in the region inhabited by Cladophora
Resumo:
Eutrophication is a persistent problem in many fresh water lakes. Delay in lake recovery following reductions in external loading of phosphorus, the limiting nutrient in fresh water ecosystems, is often observed. Models have been created to assist with lake remediation efforts, however, the application of management tools to sediment diagenesis is often neglected due to conceptual and mathematical complexity. SED2K (Chapra et al. 2012) is proposed as a "middle way", offering engineering rigor while being accessible to users. An objective of this research is to further support the development and application SED2K for sediment phosphorus diagenesis and release to the water column of Onondaga Lake. Application of SED2K has been made to eutrophic Lake Alice in Minnesota. The more homogenous sediment characteristics of Lake Alice, compared with the industrially polluted sediment layers of Onondaga Lake, allowed for an invariant rate coefficient to be applied to describe first order decay kinetics of phosphorus. When a similar approach was attempted on Onondaga Lake an invariant rate coefficient failed to simulate the sediment phosphorus profile. Therefore, labile P was accounted for by progressive preservation after burial and a rate coefficient which gradual decreased with depth was applied. In this study, profile sediment samples were chemically extracted into five operationally-defined fractions: CaCO3-P, Fe/Al-P, Biogenic-P, Ca Mineral-P and Residual-P. Chemical fractionation data, from this study, showed that preservation is not the only mechanism by which phosphorus may be maintained in a non-reactive state in the profile. Sorption has been shown to contribute substantially to P burial within the profile. A new kinetic approach involving partitioning of P into process based fractions is applied here. Results from this approach indicate that labile P (Ca Mineral and Organic P) is contributing to internal P loading to Onondaga Lake, through diagenesis and diffusion to the water column, while the sorbed P fraction (Fe/Al-P and CaCO3-P) is remaining consistent. Sediment profile concentrations of labile and total phosphorus at time of deposition were also modeled and compared with current labile and total phosphorus, to quantify the extent to which remaining phosphorus which will continue to contribute to internal P loading and influence the trophic status of Onondaga Lake. Results presented here also allowed for estimation of the depth of the active sediment layer and the attendant response time as well as the sediment burden of labile P and associated efflux.
Resumo:
The nutrient uptake response of ectomycorrhizal fungi (ECM) to different nutrient substrates is a driving force in ecosystem nutrient cycling. We hypothesized that taxa from low nitrogen (N) soils would be more likely to use organic N compared to taxa from high N soils, and that taxa from high N would be more likely to use organic phosphorus (P) sources when compared to the ECM dominant in low N soils. This study focuses on the growth response of ECM species collected over a N gradient to different forms of N and P nutrient substrates and whether ECM growth in a particular nutrient source can be related to how the ECM fungi have responded to elevated N in the field. This study found a mixed ECM response to organic and inorganic N and P treatments. High affinity N taxa expected to respond positively to inorganic N produced the phosphatase enzyme to take up organic phosphorus, but not all low affinity N taxa expected to negatively respond to organic P produced the protease enzyme to take up organic N. Interspecific variability was displayed by some high and low affinity N taxa responded and ECM intraspecific variability in response to N and P treatments was also noted. Future analysis of may show more evident ECM response patterns to inorganic and organic forms of N and P.
Resumo:
Anthropogenic activities have increased phosphorus (P) loading in tributaries to the Laurentian Great Lakes resulting in eutrophication in small bays to most notably, Lake Erie. Changes to surface water quality from P loading have resulted in billions of dollars in damage and threaten the health of the world’s largest freshwater resource. To understand the factors affecting P delivery with projected increasing urban lands and biofuels expansion, two spatially explicit models were coupled. The coupled models predict that the majority of the basin will experience a significant increase in urban area P sources while the agriculture intensity and forest sources of P will decrease. Changes in P loading across the basin will be highly variable spatially. Additionally, the impacts of climate change on high precipitation events across the Great Lakes were examined. Using historical regression relationships on phosphorus concentrations, key Great Lakes tributaries were found to have future changes including decreasing total loads and increases to high-flow loading events. The urbanized Cuyahoga watersheds exhibits the most vulnerability to these climate-induced changes with increases in total loading and storm loading , while the forested Au Sable watershed exhibits greater resilience. Finally, the monitoring network currently in place for sampling the amount of phosphorus entering the U.S. Great Lakes was examined with a focus on the challenges to monitoring. Based on these interviews, the research identified three issues that policy makers interested in maintaining an effective phosphorus monitoring network in the Great Lakes should consider: first, that the policy objectives driving different monitoring programs vary, which results in different patterns of sampling design and frequency; second, that these differences complicate efforts to encourage collaboration; and third, that methods of funding sampling programs vary from agency to agency, further complicating efforts to generate sufficient long-term data to improve our understanding of phosphorus into the Great Lakes. The dissertation combines these three areas of research to present the potential future impacts of P loading in the Great Lakes as anthropogenic activities, climate and monitoring changes. These manuscripts report new experimental data for future sources, loading and climate impacts on phosphorus.
Resumo:
OBJECTIVES: Premature babies require supplementation with calcium and phosphorus to prevent metabolic bone disease of prematurity. To guide mineral supplementation, two methods of monitoring urinary excretion of calcium and phosphorus are used: urinary calcium or phosphorus concentration and calcium/creatinine or phosphorus/creatinine ratios. We compare these two methods in regards to their agreement on the need for mineral supplementation. METHODS: Retrospective chart review of 230 premature babies with birthweight <1500 g, undergoing screening of urinary spot samples from day 21 of life and fortnightly thereafter. Hypothetical cut-off values for urine calcium or phosphorus concentration (1 mmol/l) and urine calcium/creatinine ratio (0.5 mol/mol) or phosphorus/creatinine ratio (4 mol/mol) were applied to the sample results. The agreement on whether or not to supplement the respective minerals based on the results with the two methods was compared. Multivariate general linear models sought to identify patient characteristic to predict disagreeing results. RESULTS: 24.8% of cases disagreed on the indication for calcium supplementation, 8.8% for phosphorus. Total daily calcium intake was the only patient characteristic associated with discordant results. CONCLUSIONS: With the intention to supplement the respective mineral, comparison of urinary mineral concentration with mineral/creatinine ratio is moderate for Calcium and good for Phosphorus. The results do not allow to identify superiority of either method on the decision which babies require calcium and/or phosphorus supplements.
Resumo:
Phosphorus (P) is an essential macronutrient for all living organisms. Phosphorus is often present in nature as the soluble phosphate ion PO43– and has biological, terrestrial, and marine emission sources. Thus PO43– detected in ice cores has the potential to be an important tracer for biological activity in the past. In this study a continuous and highly sensitive absorption method for detection of dissolved reactive phosphorus (DRP) in ice cores has been developed using a molybdate reagent and a 2-m liquid waveguide capillary cell (LWCC). DRP is the soluble form of the nutrient phosphorus, which reacts with molybdate. The method was optimized to meet the low concentrations of DRP in Greenland ice, with a depth resolution of approximately 2 cm and an analytical uncertainty of 1.1 nM (0.1 ppb) PO43–. The method has been applied to segments of a shallow firn core from Northeast Greenland, indicating a mean concentration level of 2.74 nM (0.26 ppb) PO43– for the period 1930–2005 with a standard deviation of 1.37 nM (0.13 ppb) PO43– and values reaching as high as 10.52 nM (1 ppb) PO43–. Similar levels were detected for the period 1771–1823. Based on impurity abundances, dust and biogenic particles were found to be the most likely sources of DRP deposited in Northeast Greenland.
Resumo:
Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.
Resumo:
In a forest grove at Korup dominated by the ectomycorrhizal species Microberlinia bisulcata, an experiment tested whether phosphorus (P) was a limiting nutrient. P-fertilization of seven subplots 1995-97 was compared with seven controls. It led to large increases in soil P concentrations. Trees were measured in 1995 and 2000. M. bisulcata and four other species were transplanted into the treatments, and a wild cohort of M. bisulcata seedlings was followed in both. Leaf litter fall from trees and seedlings were analysed for nutrients. Growth of trees was not affected by added P. Transplanted seedlings survived better in the controls than added-P subplots: they did not grow better with added-P.M. bisulcata wildlings survived slightly better in the added-P subplots in yr 1 but not later. Litter fall and transplanted survivors had much higher concentrations of P (not N) in the added-P than control subplots. Under current conditions, it appears that P does not limit growth of trees or hinder seedling establishment, especially of M. bisculcata, in these low-P grove soils.
Resumo:
The efficacy and tolerance of a novel microbial 6-phytase were investigated in rainbow trout, Oncorhynchus mykiss, and Nile tilapia, Oreochromis niloticus. Reference diets were sufficient in available phosphorus (P). The test diet limiting in available P was supplemented with phytase at 500, 1000, or 2000 phytase units/kg feed. The enzyme was effective in increasing total P apparent digestibility coefficient in relation to increasing the dose of phytase in rainbow trout and Nile tilapia. Zinc apparent digestibility improved in relation to phytase supplementation in rainbow trout. P release due to phytase supplementation ranged from 0.06 to 0.18% P/kg feed in rainbow trout and from 0.13 to 0.26% P/kg feed in Nile tilapia. A 58-d performance trial was conducted to evaluate tolerance of fish to phytase supplementation. Dietary treatments consisted of a basal diet without phytase or supplemented with 2000 and 200,000 phytase units/kg feed. Results indicate that this novel microbial 6-phytase is well tolerated by fish. Significant improvements for growth as well as feed conversion ratio were observed when the phytase was fed at 2000 phytase units/kg feed. This phytase is proven efficient in releasing P from phytate and could be added when plants are used for fish meal replacement in diets for salmonid and omnivorous fish.
Resumo:
The functioning and services of Central European forests are threatened by global change and a loss of biodiversity. Nutrient cycling as a key forest function is affected by biotic drivers (e.g., dominant tree species, understory plants, soil organisms) that interact with abiotic conditions (e.g., climate, soil properties). In contrast to grassland ecosystems, evidence for the relationship of nutrient cycles and biodiversity in forests is scarce because the structural complexity of forests limits experimental control of driving factors. Alternatively, observational studies along gradients in abiotic conditions and biotic properties may elucidate the role of biodiversity for forest nutrient cycles. This thesis aims to improve the understanding of the functional importance of biodiversity for nutrient cycles in forests by analyzing water-bound fluxes of nitrogen (N) and phosphorus (P) along gradients in biodiversity in three regions of Germany. The tested hypotheses included: (1) temperate forest canopies retain atmospheric N and retention increases with increasing plant diversity, (2) N release from organic layers increases with resource availability and population size of decomposers but N leaching decreases along a gradient in plant diversity, (3) P leaching from forest canopies increases with improved P supply from recalcitrant P fractions by a more diverse ectomycorrhizal fungal community. In the canopies of 27 forest stands from three regions, 16 % to 51 % of atmospheric N inputs were retained. Regional differences in N retention likely resulted from different in N availability in the soil. Canopy N retention was greater in coniferous than in beech forests, but this was not the case on loessderived soils. Nitrogen retention increased with increasing tree and shrub diversity which suggested complementary aboveground N uptake. The strength of the diversity effect on canopy N uptake differed among regions and between coniferous and deciduous forests. The N processing in the canopy directly coupled back to N leaching from organic layers in beech forests because throughfall-derived N flushed almost completely through the mull-type organic layers at the 12 studied beech sites. The N release from organic layers increased with stand basal area but was rather low (< 10 % of annual aboveground litterfall) because of a potentially high microbial N immobilization and intensive incorporation of litter into the mineral soil by bioturbation. Soil fauna biomass stimulated N mineralization through trophic interactions with primary producers and soil microorganisms. Both gross and net leaching from organic layers decreased with increasing plant diversity. Especially the diversity but not the cover of herbs increased N uptake. In contrast to N, P was leached from the canopy. Throughfall-derived P was also flushed quickly through the mull-type organic layers and leached P was predominantly immobilized in non directly plant-available P fractions in the mineral soil. Concentrations of plant-available phosphate in mineral soil solution were low and P leaching from the canopy increased with increasing concentrations of the moderately labile P fraction in soil and increasing ectomycorrhiza diversity while leaf C:P ratios decreased. This suggested that tree P supply benefited from complementary mining of diverse mycorrhizal communities for recalcitrant P. Canopy P leaching increased in years with pronounced spring drought which could lead to a deterioration of P supply by an increasing frequency of drought events. This thesis showed that N and P cycling in Central European forests is controlled by a complex interplay of abiotic site conditions with biological processes mediated by various groups of organisms, and that diverse plant communities contribute to tightening the N cycle in Central European forests and that diverse mycorrhizal communities improve the limited P availability. Maintaining forest biodiversity seems essential to ensure forest services in the light of environmental change.
Resumo:
Few studies have directly related turfgrass growth and quality responses to extractable soil P concentrations in sand greens. A 3-yr field experiment was conducted on a sand-based putting green to determine creeping bentgrass (Agrostis stolonifera L.) growth and quality responses to extractable soil P. Extractable soil P concentrations were obtained by using the modified-Morgan, Mehlich-1, and Bray-1 extractants. Critical extractable P concentrations (above which there is a low probability of response to increasing soil P concentrations) for shoot counts, thatch thickness, relative clipping yields, quality ratings, P deficiency ratings, tissue P concentrations, and root weights were determined using Cate-Nelson (CN) and quadratic response and plateau (QRP) models. Both models fit the data relatively well in most cases (R2 values from 0.12 to 0.89), and critical concentrations for the QRP models were always greater than the CN models. Critical extractable P concentrations were lowest for the modified-Morgan extractant (1.4 to 12.0 mg kg(-1)) and greatest for the Mehlich-1 extractant (14.1 to 63.6 mg kg(-1)). Application of estimated critical extractable P concentrations in this study could be used to substantiate observed responses or explain lack of responses in other previously reported creeping bentgrass P studies. We found better model fits with modified-Morgan extractable P for bentgrass quality ratings, deficiency ratings, and tissue P concentrations than with P extracted by the Mehlich or Bray methods. This suggests that the modified-Morgan extractant may have advantages over stronger-acid extractants when used on sand-based media. The results can be used to revise or update existing P fertilization recommendations for bent-grass grown on sand-based media.