996 resultados para northeast Arnhem Land
Resumo:
The Late Cretaceous was a time of tremendous global change, as the final stages of the Age of Dinosaurs were shaped by climate and sea level fluctuations and witness to marked paleogeographic and faunal changes, before the end-Cretaceous bolide impact. The terrestrial fossil record of Late Cretaceous Europe is becoming increasingly better understood, based largely on intensive fieldwork over the past two decades, promising new insights into latest Cretaceous faunal evolution. We review the terrestrial Late Cretaceous record from Europe and discuss its importance for understanding the paleogeography, ecology, evolution, and extinction of land-dwelling vertebrates. We review the major Late Cretaceous faunas from Austria, Hungary, France, Spain, Portugal, and Romania, as well as more fragmentary records from elsewhere in Europe. We discuss the paleogeographic background and history of assembly of these faunas, and argue that they are comprised of an endemic 'core' supplemented with various immigration waves. These faunas lived on an island archipelago, and we describe how this insular setting led to ecological peculiarities such as low diversity, a preponderance of primitive taxa, and marked changes in morphology (particularly body size dwarfing). We conclude by discussing the importance of the European record in understanding the end-Cretaceous extinction and show that there is no clear evidence that dinosaurs or other groups were undergoing long-term declines in Europe prior to the bolide impact.
Resumo:
We investigated the feeding ecology of juvenile salmon during the critical early life-history stage of transition from shallow to deep marine waters by sampling two stations (190 m and 60 m deep) in a northeast Pacific fjord (Dabob Bay, WA) between May 1985 and October 1987. Four species of Pacific salmon—Oncorhynchus keta (chum) , O. tshawytscha (Chinook), O. gorbuscha (pink), and O. kisutch (coho)—were examined for stomach contents. Diets of these fishes varied temporally, spatially, and between species, but were dominated by insects, euphausiids, and decapod larvae. Zooplankton assemblages and dry weights differed between stations, and less so between years. Salmon often demonstrated strongly positive or negative selection for specific prey types: copepods were far more abundant in the zooplankton than in the diet, whereas Insecta, Araneae, Cephalapoda, Teleostei, and Ctenophora were more abundant in the diet than in the plankton. Overall diet overlap was highest for Chinook and coho salmon (mean=77.9%)—species that seldom were found together. Chum and Chinook salmon were found together the most frequently, but diet overlap was lower (38.8%) and zooplankton biomass was not correlated with their gut fullness (%body weight). Thus, despite occasional occurrences of significant diet overlap between salmon species, our results indicate that interspecific competition among juvenile salmon does not occur in Dabob Bay.
Resumo:
To determine if shoreface sand ridges provide unique habitats for fish on the inner continental shelf, two cross-shelf trawl surveys (23 km in length) were conducted in southern New Jersey (July and September 1991−95 with a beam trawl and July and September 1997−06 with an otter trawl) to assess whether species abundance, richness, and assemblages differed on and away from the ridge. The dominant species collected with both gears were from the families Paralichthyidae, Triglidae, Gobiidae, Serranidae, Engraulidae, Stromateidae, and Sciaenidae. Overall abundance (n=41,451 individuals) and species richness (n=61 species) were distributed bimodally across the nearshore to offshore transect, and the highest values were found on either side of the sand ridge regardless of gear type. Canonical correspondence analysis revealed three species assemblages: inshore (<5 meters depth), near-ridge (9−14 meters depth), and offshore (>14 meters depth), and variation in species composition between gear types. Environmental factors that corresponded with the assemblage changes included depth, temperature, distance from the top of the ridge, and habitat complexity. The most abundant near-ridge assemblages were distinct and included economically important species. Sand ridges of the inner continental shelf appear to be important habitat for a number of fish species and therefore may not be a suitable area for sand and gravel mining.
Resumo:
Errors in growth estimates can affect drastically the spawner-perrecruit threshold used to recommend quotas for commercial fish catches. Growth parameters for sablefish (Anoplopoma fimbria) in Alaska have not been updated for stock assessment purposes for more than 20 years, although aging of sablefish has continued. In this study, length-stratified data (1981–93 data from the annual longline survey conducted cooperatively by the Fisheries Agency of Japan and the Alaska Fisheries Science Center of the National Marine Fisheries Service) were updated and corrected for discovered sampling bias. In addition, more recent, randomly collected samples (1996–2004 data from the annual longline survey conducted by the Alaska Fisheries Science Center) were analyzed and new length-at-age and weight-at-age parameters were estimated. Results were similar between this analysis with length-at-age data from 1981 to 2004 and analysis with updated longline survey data through 2010; therefore, we used our initial results from analysis done with data through 2004. We found that, because of a stratified sampling scheme, growth estimates of sablefish were overestimated with the older data (1981–93), and growth parameters used in the Alaskan sablefish assessment model were, thus, too large. In addition, a comparison of the bias-corrected 1981–93 data and the 1996–2004 data showed that, in more recent years, sablefish grew larger and growth differed among regions. The updated growth information improves the fit of the data to the sablefish stock assessment model with biologically reasonable results. These findings indicate that when the updated growth data (1996–2004) are used in the existing sablefish assessment model, estimates of fishing mortality increase slightly and estimates of female spawning biomass decrease slightly. This study provides evidence of the importance of periodically revisiting biological parameter estimates, especially as data accumulate, because the addition of more recent data often will be more biologically realistic. In addition, it exemplifies the importance of correcting biases from sampling that may contribute to erroneous parameter estimates.