776 resultados para muscle tonus
Resumo:
La faiblesse des muscles respiratoires peut entraîner une dyspnée, un encombrement bronchique et une insuffisance respiratoire potentiellement fatale. L'évaluation de la force musculaire respiratoire s'impose donc dans les affections neuro-musculaires, mais également dans les situations de dyspnée inexpliquée par une première évaluation cardiaque et pulmonaire. À la spirométrie, une faiblesse musculaire est suspectée sur la base de la boucle débit-volume montrant un débit de pointe émoussé et une fin prématurée de l'expiration. Une diminution importante de la capacité vitale en position couchée suggère une paralysie diaphragmatique. La force inspiratoire est mesurée par la pression inspiratoire maximale (PImax) contre une quasi-occlusion des voies aériennes. Ce test relativement difficile est d'interprétation délicate en cas de collaboration insuffisante. La mesure de la pression nasale sniff (SNIP) est une alternative utile, car elle élimine le problème des fuites autour de l'embout buccal et la réalisation du reniflement est facile. De même, la pression trans-diaphragmatique sniff mesure la force du diaphragme au moyen de sondes oesophagienne et gastrique. En cas de collaboration insuffisante, on peut recourir à la stimulation magnétique des nerfs phréniques qui induit une contraction non-volontaire du diaphragme. La force expiratoire est mesurée par la pression expiratoire maximale (PEmax) contre une quasi-occlusion. La force disponible pour tousser est mesurée par la pression gastrique à la toux, ou plus simplement par le débit de pointe à la toux. Chez les patients à risque, la mesure de la force des muscles respiratoires permet d'instaurer à temps une assistance ventilatoire ou à la toux.
Resumo:
Transcriptional coregulators control the activity of many transcription factors and are thought to have wide-ranging effects on gene expression patterns. We show here that muscle-specific loss of nuclear receptor corepressor 1 (NCoR1) in mice leads to enhanced exercise endurance due to an increase of both muscle mass and of mitochondrial number and activity. The activation of selected transcription factors that control muscle function, such as MEF2, PPARβ/δ, and ERRs, underpins these phenotypic alterations. NCoR1 levels are decreased in conditions that require fat oxidation, resetting transcriptional programs to boost oxidative metabolism. Knockdown of gei-8, the sole C. elegans NCoR homolog, also robustly increased muscle mitochondria and respiration, suggesting conservation of NCoR1 function. Collectively, our data suggest that NCoR1 plays an adaptive role in muscle physiology and that interference with NCoR1 action could be used to improve muscle function.
Resumo:
The purpose of this study was to examine the relationship between skeletal muscle monocarboxylate transporters 1 and 4 (MCT1 and MCT4) expression, skeletal muscle oxidative capacity and endurance performance in trained cyclists. Ten well-trained cyclists (mean +/- SD; age 24.4 +/- 2.8 years, body mass 73.2 +/- 8.3 kg, VO(2max) 58 +/- 7 ml kg(-1) min(-1)) completed three endurance performance tasks [incremental exercise test to exhaustion, 2 and 10 min time trial (TT)]. In addition, a muscle biopsy sample from the vastus lateralis muscle was analysed for MCT1 and MCT4 expression levels together with the activity of citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD). There was a tendency for VO(2max) and peak power output obtained in the incremental exercise test to be correlated with MCT1 (r = -0.71 to -0.74; P < 0.06), but not MCT4. The average power output (P (average)) in the 2 min TT was significantly correlated with MCT4 (r = -0.74; P < 0.05) and HAD (r = -0.92; P < 0.01). The P (average) in the 10 min TT was only correlated with CS activity (r = 0.68; P < 0.05). These results indicate the relationship between MCT1 and MCT4 as well as cycle TT performance may be influenced by the length and intensity of the task.
Resumo:
1. The major side effects of the immunosuppressive drug cyclosporin A (CsA) are hypertension and nephrotoxicity. It is likely that both are caused by local vasoconstriction. 2. We have shown previously that 20 h treatment of rat vascular smooth muscle cells (VSMC) with therapeutically relevant CsA concentrations increased the cellular response to [Arg8]vasopressin (AVP) by increasing about 2 fold the number of vasopressin receptors. 3. Displacement experiments using a specific antagonist of the vasopressin V1A receptor (V1AR) showed that the vasopressin binding sites present in VSMC were exclusively receptors of the V1A subtype. 4. Receptor internalization studies revealed that CsA (10(-6) M) did not significantly alter AVP receptor trafficking. 5. V1AR mRNA was increased by CsA, as measured by quantitative polymerase chain reaction. Time-course studies indicated that the increase in mRNA preceded cell surface expression of the receptor, as measured by hormone binding. 6. A direct effect of CsA on the V1AR promoter was investigated using VSMC transfected with a V1AR promoter-luciferase reporter construct. Surprisingly, CsA did not increase, but rather slightly reduced V1AR promoter activity. This effect was independent of the cyclophilin-calcineurin pathway. 7. Measurement of V1AR mRNA decay in the presence of the transcription inhibitor actinomycin D revealed that CsA increased the half-life of V1AR mRNA about 2 fold. 8. In conclusion, CsA increased the response of VSMC to AVP by upregulating V1AR expression through stabilization of its mRNA. This could be a key mechanism in enhanced vascular responsiveness induced by CsA, causing both hypertension and, via renal vasoconstriction, reduced glomerular filtration.
Resumo:
Summary : Lipid metabolism disorders, leading to obesity and cardiovascular diseases, are a major public health issue worldwide. These diseases have been treated by drugs and surgery, leading to tremendous costs and secondary morbidity. The aim of this thesis work is to investigate the mechanisms of actions of a new, micronutrition-based, approach to prevent obesity and cardiovascular diseases. This specific combination of micronutrients, Lipistase, incorporated into any dietary ail can be used in the daily food. Micronutrients are substances used by the living organism in small quantities to maintain physiological homeostasis. However, the human body is not able to produce them and has to obtain them from dietary sources. The combination of micronutrients investigated here, is composed of 26 compounds including trace elements, vitamins, minerals, ails and plant extracts, known to have individually a beneficial effect on lipid metabolism regulation. These specific micronutrients are used for the first time in a combinatorial mode targeting several metabolic pathways for better homeostasis control as opposed to a single target treatment, either chemical or natural. Short and long term studies, in different mouse strains, showed a significant decrease in plasma triglycerides, body weight gain and body fat mass in animals that were fed with a standard diet containing Lipistase. Additionally, a greatly reduced fat accumulation was observed in adipose tissue and liver of Lipistase-treated animals, while lipid and glucose utilization by skeletal muscle was enhanced. Moreover, the size of atherosclerotic plaques was significantly reduced in mice whose masher was treated during pregnancy and suckling, without showing any adverse effect. Finally, Lipistase has been shown to increase longevity by 20%. The control mice that did not receive Lipistase in their diet did not show all these beneficial effects. These micronutrients are used at the lowest dosage ever reported for treating Lipid disorders, resulting in far much lower costs as well as probably a higher safety. This is the first approach being very suitable for an effective large scale prevention policy for obesity and cardiovascular diseases, like iodine in dietary salt has been for goiter. Résumé : Les dysrégulations du métabolisme des lipids, à l'origine d'obésité et de maladies cardiovasculaires, sont un problème de santé publique majeur et mondial. Ces maladies impliquent des traitements médicamenteux et chirurgicaux dont le coût la morbidité secondaire sont très important. Le but de ce travail de thèse est d'étudier les mécanismes d'action d'une nouvelle approche préventive, basée sur la micronutrition. Cette combinaison spécifique de micronutriments, Lipistase, peut être incorporée dans n'importe quelle huile alimentaire et utilisée dans l'alimentation quotidienne. Les micronutrirnents sont des substances essentielles, à très faibles doses, pour le maintien de l'homéostasie physiologique des organismes vivants. Cependant, étant incapable de les synthétiser, le corps humain est dépendant en cela de l'apport alimentaire. La combinaison de micronutriments que nous avons étudié contient 26 composants, incluant des extraits de plantes, des huiles, des vitamines, des métaux et des minéraux, tous connus pour avoir individuellement des effets bénéfiques sur la régulation du métabolisme des lipides. Ces micronutriments spécifiques sont utilisés pour la première fois en mode combinatoire, ciblant ainsi plusieurs voies métaboliques pour un meilleur control de l'homéostasie, par opposition monothérapies chimiques ou naturelles. Des expériences de court et long terme, avec divers modèles de souris, ont montré une diminution significative des taux de triglycérides plasmatiques, de la prise de poids et de la masse graisseuse corporelle chez les animaux qui ont reçu Lipistase dans la nourriture standard. Une accumulation significativement moins importante des graisses a été observée dans le tissu adipeux et hépatique des souris traitées, alors que l'utilisation des lipides et glucose a été favorisée dans le muscle. En outre, la taille des plaques d'athérosclérose aété significativement réduite chez les souris dont la mère a été traitée pendant la grossesse et l'allaitement, sans montrer aucun effet indésirable. Enfin, les souris traitées par Lipistase ont vécu 20% plus longtèmps. Les souris contrôles qui n'ont pas reçu Lipistase dans la nourriture n'ont montré aucun de ces effets bénéfiques. Ces micronutriments sont utilisés au dosage le plus faible jamais rapporté pour le traitement des maladies du métabolisme lipidique, permettant ainsi un coût plus faible et surtout une meilleure sécurité. C'est une approche adéquate pour une politique de prévention de santé publique à large échelle de l'obésité et des maladies cardiovasculaires. C'est en cela et sous bien d'autres aspects, une première dans la prise en charge des maladies du métabolisme lipidique et pourrait même être pour ces dernières ce que l'iode du sel de cuisine a été pour le goitre.
Resumo:
Smad (Sma and Mad-related protein) 2/3 are downstream signaling molecules for TGF-β and myostatin (Mstn). Recently, Mstn was shown to induce reactive oxygen species (ROS) in skeletal muscle via canonical Smad3, nuclear factor-κB, and TNF-α pathway. However, mice lacking Smad3 display skeletal muscle atrophy due to increased Mstn levels. Hence, our aims were first to investigate whether Mstn induced muscle atrophy in Smad3(-/-) mice by increasing ROS and second to delineate Smad3-independent signaling mechanism for Mstn-induced ROS. Herein we show that Smad3(-/-) mice have increased ROS levels in skeletal muscle, and inactivation of Mstn in these mice partially ablates the oxidative stress. Furthermore, ROS induction by Mstn in Smad3(-/-) muscle was not via nuclear factor-κB (p65) signaling but due to activated p38, ERK MAPK signaling and enhanced IL-6 levels. Consequently, TNF-α, nicotinamide adenine dinucleotide phosphate oxidase, and xanthine oxidase levels were up-regulated, which led to an increase in ROS production in Smad3(-/-) skeletal muscle. The exaggerated ROS in the Smad3(-/-) muscle potentiated binding of C/EBP homology protein transcription factor to MuRF1 promoter, resulting in enhanced MuRF1 levels leading to muscle atrophy.
Resumo:
Primary rib involvement accounts for 16% of paediatric Ewing sarcoma (ES). Neo-adjuvant chemotherapy and surgical tumor resection may leave large thoracic wall defects requiring complex reconstruction in a growing individual. We report our experience in three children aged 3, 10, and 12 years, in whom single-stage resection and reconstruction were performed using a Gore-Tex Dualmesh patch, covered by a latissimus dorsi rotation flap harvested in continuity with the thoracolumbar fascia. The youngest patient also had a vertical expandable prosthetic titanium rib (VEPTR) anchored to help prevent subsequent scoliosis throughout growth.
Resumo:
Objective To analyze pelvic floor muscle strength (PFMS), urinary continence and quality of life related to urinary incontinence (UI) of women in the first trimester of pregnancy. Method Cross-sectional study with a sample of 500 women who started prenatal care in a complementary healthcare facility in Guarulhos, state of São Paulo, from 2012 and 2013. Pelvic floor muscle strength was evaluated through perineometry. The pregnant women who presented UI answered the International Consultation on Incontinence Questionnaire-Short Form (ICIQ-SF). Results It was found that maternal age (OR=1.06; CI95% 1.02-1.11) and prior UI (OR=15.12; 95%CI 8.19-27.92) are the variables that, in tandem, best explain the occurrence of UI at the beginning of pregnancy. The mean score on the ICIQ-SF was 8.2 (SD=3.9), considered a moderate impact on quality of life. Conclusion Older pregnant women with prior UI are more likely to have UI in the first trimester of pregnancy.
Resumo:
We compared the extent and origin of muscle fatigue induced by short-pulse-low-frequency [conventional (CONV)] and wide-pulse-high-frequency (WPHF) neuromuscular electrical stimulation. We expected CONV contractions to mainly originate from depolarization of axonal terminal branches (spatially determined muscle fiber recruitment) and WPHF contractions to be partly produced via a central pathway (motor unit recruitment according to size principle). Greater neuromuscular fatigue was, therefore, expected following CONV compared with WPHF. Fourteen healthy subjects underwent 20 WPHF (1 ms-100 Hz) and CONV (50 μs-25 Hz) evoked isometric triceps surae contractions (work/rest periods 20:40 s) at an initial target of 10% of maximal voluntary contraction (MVC) force. Force-time integral of the 20 evoked contractions (FTI) was used as main index of muscle fatigue; MVC force loss was also quantified. Central and peripheral fatigue were assessed by voluntary activation level and paired stimulation amplitudes, respectively. FTI in WPHF was significantly lower than in CONV (21,717 ± 11,541 vs. 37,958 ± 9,898 N·s P<0,001). The reductions in MVC force (WPHF: -7.0 ± 2.7%; CONV: -6.2 ± 2.5%; P < 0.01) and paired stimulation amplitude (WPHF: -8.0 ± 4.0%; CONV: -7.4 ± 6.1%; P < 0.001) were similar between conditions, whereas no change was observed for voluntary activation level (P > 0.05). Overall, our results showed a different motor unit recruitment pattern between the two neuromuscular electrical stimulation modalities with a lower FTI indicating greater muscle fatigue for WPHF, possibly limiting the presumed benefits for rehabilitation programs.
Resumo:
PURPOSE: The effects of β(2)-agonists on human skeletal muscle contractile properties, particularly on slow fibers, are unclear. Moreover, it remains to be ascertained whether central motor drive (CMD) during voluntary contractions could counter for eventual contractile alterations induced by β(2)-agonists. This study investigated central and peripheral neuromuscular adjustments induced by β(2)-agonist terbutaline on a predominantly slow human muscle, the soleus. METHODS: Ten recreationally active men ingested either a single dose of 8 mg of terbutaline or placebo in a randomized double-blind order (two experimental sessions). Isometric plantarflexion torque was measured during single and tetanic (10 and 100 Hz) stimulations as well as during submaximal and maximal voluntary contractions (MVC). Twitch peak torque and half-relaxation time were calculated. CMD was estimated via soleus electromyographic recordings obtained during voluntary contractions performed at approximately 50% MVC. RESULTS: MVC and twitch peak torque were not modified by terbutaline. Twitch half-relaxation time was 28% shorter after terbutaline administration compared with placebo (P < 0.001). Tetanic torques at 10 and 100 Hz were significantly lower after terbutaline intake compared with placebo (-40% and -24% respectively, P < 0.001). Despite comparable torque of submaximal voluntary contractions in the two conditions, CMD was 7% higher after terbutaline ingestion compared with placebo (P < 0.01). CONCLUSION: These results provide evidence that terbutaline modulates the contractility of the slow soleus muscle and suggest that the increased CMD during submaximal contractions may be viewed as a compensatory adjustment of the central nervous system to counter the weakening action induced by terbutaline on the contractile function of slow muscle fibers.
Resumo:
Smad3 is a key intracellular signaling mediator for both transforming growth factor-β and myostatin, two major regulators of skeletal muscle growth. Previous published work has revealed pronounced muscle atrophy together with impaired satellite cell functionality in Smad3-null muscles. In the present study, we have further validated a role for Smad3 signaling in skeletal muscle regeneration. Here, we show that Smad3-null mice had incomplete recovery of muscle weight and myofiber size after muscle injury. Histological/immunohistochemical analysis suggested impaired inflammatory response and reduced number of activated myoblasts during the early stages of muscle regeneration in the tibialis anterior muscle of Smad3-null mice. Nascent myofibers formed after muscle injury were also reduced in number. Moreover, Smad3-null regenerated muscle had decreased oxidative enzyme activity and impaired mitochondrial biogenesis, evident by the downregulation of the gene encoding mitochondrial transcription factor A, a master regulator of mitochondrial biogenesis. Consistent with known Smad3 function, reduced fibrotic tissue formation was also seen in regenerated Smad3-null muscle. In conclusion, Smad3 deficiency leads to impaired muscle regeneration, which underscores an essential role of Smad3 in postnatal myogenesis. Given the negative role of myostatin during muscle regeneration, the increased expression of myostatin observed in Smad3-null muscle may contribute to the regeneration defects.
Resumo:
OBJECTIVE: To evaluate the results of Muller's muscle-conjunctival resection for correction of blepharoptosis and to discuss the advantages of this procedure. METHODS: 38 patients (39 eyelids) were submitted to Muller's muscle-conjunctival resection. Blepharoptosis varied from 1.0 mm to 3.0 mm (mean: 2.0 mm). The amount of eyelid elevation produced by phenylephrine guided the amount of tissue to be resected. RESULT: 33 eyelids (85%) treated with this procedure were cosmetically acceptable. CONCLUSIONS: Muller's muscle-conjunctival resection procedure is a relatively simple technique for blepharoptosis, with good levator function and positive 10% phenylephrine test. The advantages are: preservation of tarsus and predictable results.
Resumo:
Improvement of nerve regeneration and functional recovery following nerve injury is a challenging problem in clinical research. We have already shown that following rat sciatic nerve transection, the local administration of triiodothyronine (T3) significantly increased the number and the myelination of regenerated axons. Functional recovery is a sum of the number of regenerated axons and reinnervation of denervated peripheral targets. In the present study, we investigated whether the increased number of regenerated axons by T3-treatment is linked to improved reinnervation of hind limb muscles. After transection of rat sciatic nerves, silicone or biodegradable nerve guides were implanted and filled with either T3 or phosphate buffer solution (PBS). Neuromuscular junctions (NMJs) were analyzed on gastrocnemius and plantar muscle sections stained with rhodamine alpha-bungarotoxin and neurofilament antibody. Four weeks after surgery, most end-plates (EPs) of operated limbs were still denervated and no effect of T3 on muscle reinnervation was detected at this stage of nerve repair. In contrast, after 14 weeks of nerve regeneration, T3 clearly enhanced the reinnervation of gastrocnemius and plantar EPs, demonstrated by significantly higher recovery of size and shape complexity of reinnervated EPs and also by increased acetylcholine receptor (AChRs) density on post synaptic membranes compared to PBS-treated EPs. The stimulating effect of T3 on EP reinnervation is confirmed by a higher index of compound muscle action potentials recorded in gastrocnemius muscles. In conclusion, our results provide for the first time strong evidence that T3 enhances the restoration of NMJ structure and improves synaptic transmission.