512 resultados para machining jig
Resumo:
A possible way for increasing the cutting tool life can be achieved by heating the workpiece in order to diminish the shear stress of material and thus decrease the machining forces. In this study, quartz electrical resistances were set around the workpiece for heating it during the turning. In the tests, heat-resistant austenitic alloy steel was used, hardenable by precipitation, mainly used in combustion engine exhaustion valves, among other special applications for industry. The results showed that in the hot machining the cutting tool life can be increased by 340% for the highest cutting speed tested and had a reduction of 205% on workpiece surface roughness, accompanied by a force decrease in relation to conventional turning. In addition, the chips formed in hot turning exhibited a stronger tendency to continuous chip formation indicating less energy spent in material removal process. Microhardness tests performed in the workpieces subsurface layers at 5 m depth revealed slightly higher values in the hot machining than in conventional, showing a tendency toward the formation of compressive residual stress into plastically deformed layer. The hot turning also showed better performance than machining using cutting fluid. Since it is possible to avoid the use of cutting fluid, this machining method can be considered better for the environment and for the human health.
Resumo:
The aim of this study was to perform a physicochemical and morphological characterization and compare the mechanical behavior of an experimental Ti-Mo alloy to the analogous metallic Ti-based fixation system, for mandibular angle fractures. Twenty-eight polyurethane mandibles were uniformly sectioned on the left angle. These were divided into 4 groups: group Eng 1P, one 2.0-mm plate and 4 screws 6 mm long; group Eng 2P, two 2.0-mm plates, the first fixed with 4 screws 6 mm long and the second with 4 screws 12 mm long. The same groups were created for the Ti-15Mo alloy. Each group was subjected to linear vertical loading at the first molar on the plated side in a mechanical testing unit. Means and standard deviations were compared with respect to statistical significance using ANOVA. The chemical composition of the Ti-15Mo alloy was close to the nominal value. The mapping of Mo and Ti showed a homogeneous distribution. SEM of the screw revealed machining debris. For the plates, only the cpTi plate undergoes a surface treatment. The metallographic analysis reveals granular microstructure, from the thermomechanical trials. A statistically significant difference was found (P < 0.05) when the comparison between both internal fixation techniques was performed. The 2P technique showed better mechanical behavior than 1P.
Resumo:
The lack of research related to wood machining processes, including the milling, as well as the increased use of this material in the industrial sector, it creates a need to increase research involving these processes, as the sector is in full technological and environmental remodeling. This paper studies the process of milling wood, presenting an analysis of the effects of cutting speed on surface quality by measuring roughness. We used a forward speed three cutting speeds, two species of wood (Pinus elliottii and Eucalyptus grandis) and two milling tools (roughing and finishing) machined by milling concordant and discordant. Each condition was repeated six times, and the measurements were performed in the opposite direction and in favor of cutting tool, generating results of the parameters Ra (average roughness) totaling 144 trials with it. These results were statistically analyzed using analysis of variance and Tukey test. Finally it was concluded that there are significant differences between the results of varying roughness when cutting speeds, milling and types of machining types tested
Resumo:
In heavy machining industries, a critical point that must be taken into account is setup. Because the characteristics of machine tools and parts to be machined, usually pieces robust and large, the preparation of these parts must be made accurately for machining has a good result as planned. As a result of the difficulty raised in the setup machining of heavy parts, companies in this segment seek alternatives to reduce the unproductive time caused by setup and optimize machining processes. One way was found that these companies create operating instructions that describe and standardize the operation between its employees, as well as deploy a control machining times to measure the unproductive time caused by the setup. This work studied a new system for the realization of centering and alignment of Rotating Deck R-9350 in CNC Milling Machine PAMA Speedram 3000, in Liebherr Brazil company. The part Rotating Deck R-9350 is a critical part in which its machining in PAMA Milling Machine is made in three phases and their setup times are quite high and involve stopping the machine. It has been tested and proposed a solution to the realization of this part of the setup without the use of the machine, but of the measuring instrument three-dimensional Laser tracker, with which the machine continued to work, while he was in the centering and alignment of other parts. It was noted that the instrument technically attended the need and it was possible to perform this operation more accurately
Resumo:
This paper aims to survey data to analyze the productive capacity of a machining process of rolling bearings by methods-time measurement, in order to identify its bottlenecks and propose improvements in the system. The production times at the company are not known, the method of separation of operations and identification of its activities and the timing of production times and setup become points of departure for this paper. The results from this method of analysis provide clarity in identifying system weaknesses and by them it was possible to carry out the proposals for improvement in some process steps. The implementation of the improvements was not performed, but with the goals of this work was made possible to raise relevant information of the analyzed system
Resumo:
In contrast to what happened in the past where it was possible to select which species had a lower degree of variation, it is now necessary to use fast-growing species with efficient processing. For that we use the wood of Eucalyptus sp and studies related to the machining processes and their parameters such as wear of cutting tools and roughness. The present work aims to analyze the influence of geometry of cutting tools of high speed steel and the influence of the diameter of the final pieces in the process of turning wood of Eucalyptus sp in relation to power consumption, roughness, temperature machining, chip formed and wear of cutting tools. It was observed that the smaller the diameter of the end parts and greater wear of the tools, the worse quality of the machined surfaces and the greater the power consumed in the process of machining
Resumo:
The technological expansion and market manufactured wood as wood paneling makes the research of processes involving this material are increasingly necessary . The present study examines the milling process MDF - fiberboard with average density endmill with helical teeth , with the analysis of the surface finish by evaluating the surface roughness ( Ra) and analysis of the power consumption . We analyzed three types of cuts in milling : concordant , discordant , and cut top . We used 5 rpm (6000 , 8000 , 10000 , 12000 and 14000 RPM) , establishing five-speed cutting, 301 , 402 ,502, 603 and 703 m / min respectively. Five forward speeds and 4, 6, 8, 10 and 12 m / min. Each condition was repeated six times , totaling 180 tests. The results of roughness were obtained from rugosimeter data and the power consumption were obtained by Hall-effect sensor . These results were statistically analyzed using analysis of variance and Tukey test . Finally it was concluded that there are few significant differences between the results themselves vary roughness when cutting speeds and feed and no major differences in power consumption . The best surface quality and lower power consumption were for cutting speed of 703 m / min . To varying forward speed , the speed of 4 m / min showed better surface quality and lower power consumption
Resumo:
The nickel alloys have a chemical composition with high tenor of alloy elements which are responsible for the material's mechanical and thermal properties, but also are the main causative of problems during the machining, making the process difficult. The objective of this work is the study of the machining by external cylindrical turning of the nickel based alloy Nimonic 80A, seeking the machining optimization of this alloy, seeking the best condition of lubricant fluid use, providing real increases of productivity without the need of investments in new production means. Besides, the results of this work should offer more detailed information regarding the behavior of this alloy in relation to machining by turning. The machining experiences were accomplished in a specimen of the nickel alloy, considering the machining parameters: cutting speed (75 and 90 m/min), cutting depth (0,8 mm) and feed rate (0,15 and 0,18 mm/v). The valuations were accomplished in a CNC lathe and tools with of hard metal inserts. After each stage of the turning the measures of the cutting length were accomplished, of the waste of the tools through a magnifying glass (8x) and the roughness of the specimen evaluated in each phase of the process, with the aid of a portable roughness meter. Through light optical microscopy it was possible to observe the wear of the cutting tools for each appraised condition. The roughness values, Ra and Ry, for the appraised conditions were always superiors to the theoretical values. After analysis of the results it was possible to end that, the best acting for this work strip tested it was obtained for ap=0,8mm: f=0,15mm/rev and VC=75m/min, what resulted in a larger cutting length (1811 m)
Resumo:
The search for materials with higher properties and characteristics (wear resistance, oxidation, corrosion, etc.) has driven research of various materials. Among the materials that are being studied with such properties and characteristics are super alloys based on nickel which has an important role in the aeronautical, automotive, marine, production of gas turbines and now in space vehicles, rocket engineering , experimental aircraft, nuclear reactors, steam-powered plants, petrochemical and many other applications because besides having all the characteristics and properties mentioned above also have an excellent performance at high temperatures. The super alloy based on nickel studied in this work is the super alloy Pyromet 31v normally used in the manufacture of exhaust valves in common engines and diesel engines of high power by cater requirements such as mechanical strength and corrosion resistance at temperatures of approximately 815 ° C. The objective of this work is to produce results to demonstrate more specific information about the real influence of coatings on cutting tools and cutting fluids in turning and thus promote the optimization of the machining of these alloys. The super alloy Pyromet 31v was processed through turning, being performed with various machining parameters such as cutting speed, feed rate, depth in conditions of Minimum Amount of Fluid (MAF), abundant fluid, cutting tools with coating and without coating in early in his work life and with wear. After turning were obtained several samples of chips and the part generated during the machining process, was measured roughness of the material, subsequently made macrostructural analysis of the tools used order to detect possible wear and microstructural analysis of samples collected being that the latter was used for Optical Microscopy, Scanning Electron Microscopy (SEM) and ... (Complete abstract click electronic access below)
Resumo:
The process of milling wood is widely used in operations such as planing and manufacturing frames . Machines like planers , desengrossadeiras , routers , moldureiras and machining centers employ the milling process for cutting wood . In this work the process of milling CNC machining center of Eucalyptus grandis was studied because this is very much used in furniture , but without consistent studies on this process . This work a CNC machining center brand TECH Z1 for analysis of surface quality ( Ra ) in relation to the variation of cutting speed and feed in concordant and discordant tangential milling and face milling was used . We used Eucalyptus grandis . Four forward speeds ( 3, 5 , 7, and 9 m / min ) for four shear rates ( 5,9; 8,4; 10,9 and 13,4 m/s ) were used. Was used for testing a cutter finishing top speed steel with helical teeth 16mm in diameter . 6 repetitions for each test condition were performed . From the results it was observed that the best results for roughness Vc = 10,9 m / s were obtained for the milling concordant with the forward speed Vf = 7 m / min. As for Vf = 5 m / min the best finish was achieved with Vc = 8,4 m /s in discordant for milling . The feedrate and cutting influenced the roughness . The senses of concordant and discordant and cut the top and the top had a significant difference in roughness
Resumo:
This conclusion thesis has the objective of produce substrates of Silicon Carbide from the powder of SiC for aerospace use. The powder of SiC was pressed in cylindrical form by the process called “wet way”. For the inicial pressing process was used a uniaxial squeezer and after that was used a isostatic squeezer, after that the samples were synthesized. The next step was the machining and polishing to improve the features of the surface of the sample. Then the roughness was measured, as also the Arquimedes method and optical microscopy and scanning eletron microscopy. Some innovations were done, in one of the lots little vacancys were done with organic material or silicon to reduce the weight of the sample; and the other innovation were the use of a slip film of SiC on the surface of the sample, that were after synthesized with LASER to reduce the roughness, in this samples the roughness were reduce in 50 % if compared with the other samples
Resumo:
The non-ferrous materials have got so many mechanical, physical and chemical advantageous properties so that is provided to them consolidated position in industry. In this context, aluminium alloys have been seen a lot on many applications of engineering areas – specially on automotive, aeronautical and aerospace due to their main properties such as low density, high corrosion resistance, favorable structure weight / material resistance relation, among others characteristics that are mencioned through this study. This study aims to analyze the aluminium alloys behavior on a general context when they are used on turning process, taking for examples the 6262 and 7050 aluminium alloys. In this way, the analysis studies the datas obtained during the turning tests realized on 3 steps each one; those datas are concerning the medium and total rugosities – obtained with the assistance of a portable Surface Roughness Finish Tester, as well as the chips obtained during the tests - visual analysis, and the cutting tools wear – with the assistance of an optical microscope, under different conditions of application of cutting fluids (dry machining, application of coolant in abundance and MQL – Minimum Quantity of Lubricant). The results concerning this study show detailed information about influence of cutting fluids on the machining by turning of the aluminium alloys related on this work and also about aluminium alloys in general when they are used on turning processes with different conditions from one another. By this way, it was evident the MQL technique is the best one for the 6262 alloy. However, for 7050 alloy, it was evident that the dry machining is responsible for the best results
Resumo:
The process of sanding wood is little known and industries use it in a practical way without having studied their best conditions before. There are few studies involving this type of machining. On this basis, this paper studied the effects of varying moisture content of the wood surface quality after the sanding process. It was used a sanding machine with flat horizontal cut parallel to the fibers, using: 02 different species (Pinus elliottii and Corymbia citriodora); 01 sanding abrasive (aluminum oxide) and 03 different particle size abrasives ( P80 , P100 and P120 ) . Initially, the pieces were acclimatized ( 2 ± 7% , 12% and 17% ± 2 ± 2 ) and subsequently passed by the sanding process, and therefore, the surface roughness was analyzed. For each condition, were performed 06 repetitions totaling 54 trials for each species. We analyzed the effects of wood moisture by capturing the power sanding, rougheness, acoustic emission and maximum temperature during the sanding process. The variation of moisture content produced changes in the surface quality of the finished parts, and these changes were more marked in Pinus than Corymbia. During the sanding process of the specimens with 7 % and 12 % humidity, there was a lower noise emission, power consumption and heating surface. When checking the roughness of these parts after this process, it was observed that the surface quality of them were superior in the parts sanded containing 17 % moisture
Resumo:
Currently, the competition between organizations in the pursuit of consumer preference has become increasingly fierce. In addition, consumers have become increasingly demanding due to high speed with which innovations occur, leaving the companies meet and sometimes surpass those expectations In this context, there is the necessity to use methods as mathematical models capable of dealing with the optimization of multiple responses simultaneously. In this context, this study presents an application of techniques of Design of Experiment in a machining process of a NIMONIC 80 alloy, a “superalloy” that has thermal and mechanical properties that make its machining difficult and in order to do this, the Desirability Function was used. As they are determining conditions in the machining capability of the alloy, the roughness and the cutting length were considered as variable settings, and the factors that can influence them are cutting speed, feed rate, cutting depth, inserts type and lubrication. The analysis of the result pointed out how was the influence of all factors on each response and also showed the efficiency and reliability of the method
Resumo:
Due to the rapid development of some species such as pine and eucalyptus and a growing demand for raw materials, timber, there was a need for detailed studies to better use and higher quality in products derived from wood. In order to contribute to to better utilization of wood ,this study aims to analyze the quality of the wood surface after machining Corymbia citrodora around, with varying feed rates (40, 70, 100 mm/mim), shear rate (1.88, 2.19, 2.51 m/s) and with the use of inserts for turning new and used (cemented carbide). 18 were used bodies and each body was made three different assays for each test were a total of 54 tests three replicates. This study will also addres the analysis of power consumption for each of the tests. With the results obtained through experiments, including the surface roughness of parts and power consumption for each test, we try to evaluate the power consumption in machining with the variations in cutting speed and feed, with two tools carbide