916 resultados para hexagonal GaN
Resumo:
Non-bilayer phospholipid arrangements are three-dimensional structures that form when anionic phospholipids with an intermediate structure of the tubular hexagonal phase II are present in a bilayer of lipids. Antibodies that recognise these arrangements have been described in patients with antiphospholipid syndrome and/or systemic lupus erythematosus and in those with preeclampsia; these antibodies have also been documented in an experimental murine model of lupus, in which they are associated with immunopathology. Here, we demonstrate the presence of antibodies against non-bilayer phospholipid arrangements containing mycolic acids in the sera of lepromatous leprosy (LL) patients, but not those of healthy volunteers. The presence of antibodies that recognise these non-bilayer lipid arrangements may contribute to the hypergammaglobulinaemia observed in LL patients. We also found IgM and IgG anti-cardiolipin antibodies in 77% of the patients. This positive correlation between the anti-mycolic-non-bilayer arrangements and anti-cardiolipin antibodies suggests that both types of antibodies are produced by a common mechanism, as was demonstrated in the experimental murine model of lupus, in which there was a correlation between the anti-non-bilayer phospholipid arrangements and anti-cardiolipin antibodies. Antibodies to non-bilayer lipid arrangements may represent a previously unrecognised pathogenic mechanism in LL and the detection of these antibodies may be a tool for the early diagnosis of LL patients.
Resumo:
El presente Trabajo Final de Carrera (TFC) está centrado en la Gestión de un Proyecto de Implantación de un Repositorio de Objetos Digitales de Aprendizaje en una Universidad, y queda englobado en el área de Gestión de Proyectos de la Ingeniería Técnica Informática de Gestión.
Resumo:
Report for the scientific sojourn carried out at Massachusetts General Hospital Cancer Center-Harvard Medical School, Estats Units, from 2010 to 2011. The project aims to study the aggregation behavior of amphiphilic molecules in the continuous phase of highly concentrated emulsions, which can be used as templates for the synthesis of meso/macroporous materials. At this stage of the project, we have investigated the self-assembly of diblock and triblock surfactants under the effect of a confined geometry being surrounded by the droplets of the dispersed phase. These droplets limit the growth of the aggregates, deeply modify their orientation and hence alter their spatial arrangement as compared to the self-assembly taking place far enough from any boundary surface, that is in the bulk. By performing Monte Carlo simulations, we have showed that the interface between the dispersed and continuous phases as well as its shape has a significant impact on the structural order of the resulting aggregates and hence on the potential applications of highly concentrated emulsions as reaction media, drug delivery systems, or templates for meso/macroporous materials. Due to the combined effect of symmetry breaking and morphological frustration, very intriguing structures, such as square columnar liquid crystals, twisted X-shaped aggregates, and helical phases of cylindrical aggregates, never observed in the bulk for the same model surfactant, have been found. The presence of other more conventional structures, such as micelles and cubic and hexagonal liquid crystals, formed at low and high amphiphilic concentrations, respectively, further enhance the interest on this already rich aggregation behavior.
Resumo:
PURPOSE: In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment's ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably. METHODS: Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, N(r): 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1/2. From dose volume histograms the surviving fraction of cells, equivalent uniform dose (EUD), and TCP for the different scenarios were calculated. Comparably sized spherical models containing individual spherical cells (15 microm diameter) in hexagonal lattices were constructed, and Monte Carlo simulations were executed for all the same previous scenarios. The dosimetric quantities were calculated and compared to the adjusted simple sphere model results. The model was then applied to the Bortezomib-induced enzyme-targeted radiotherapy (BETR) strategy of targeting Epstein-Barr virus (EBV)-expressing cancers. RESULTS: The TCP values were comparable to within 2% between the adjusted simple sphere and full cellular models. Additionally, models were generated for a nonuniform distribution of activity, and results were compared between the adjusted spherical and cellular models with similar comparability. The TCP values from the experimental macroscopic tumor results were consistent with the experimental observations for BETR-treated 1 g EBV-expressing lymphoma tumors in mice. CONCLUSIONS: The adjusted spherical model presented here provides more accurate TCP values than simple spheres, on par with full cellular Monte Carlo simulations while maintaining the simplicity of the simple sphere model. This model provides a basis for complementing and understanding laboratory and clinical results pertaining to radiopharmaceutical therapy.
Resumo:
O presente trabalho objetivou caracterizar o mineral magnético e identificar suas rotas pedogenéticas de transformação em um solo formado sobre esteatito, de Minas Gerais, Brasil. O óxido de ferro isoestrutural ao espinélio foi identificado e caracterizado por análises químicas, difração de raios X, espectroscopia Mössbauer e medidas de magnetização de saturação. Na rocha fresca, foi encontrada magnetita estequiométrica e bem cristalizada, com parâmetro da rede cúbica, a o = 0.8407(5) nm. Nas frações areia e silte, foram detectadas magnetita parcialmente alterada e hematita estequiométrica e bem cristalizada, com parâmetros da rede hexagonal, a = 0.5036(3) nm e c = 1.375(4) nm. A ocorrência dessas hematitas deveu-se principalmente à oxidação do Fe2+ a Fe3+, no sítio octaédrico da magnetita, durante a pedogênese. Esse processo foi caracterizado pelo aparecimento de pequena quantidade de Fe3+ eletronicamente desacoplada, encontrada nas magnetitas parcialmente oxidadas, cujas fórmulas para as diferentes estequiometrias foram propostas. Verificou-se também pequena quantidade de ilmenita nas amostras de rocha e de solo.
Resumo:
Epitaxial films of the biferroic YMnO3 (YMO) oxide have been grown on platinum-coated SrTiO3(1 1 1) and Al2O3(0 0 0 1) substrates. The platinum electrodes, (1 1 1) oriented, are templates for the epitaxy of the hexagonal phase of YMO with a (0 0 0 1) out-of-plane orientation, which is of interest as this is the polarization direction of YMO. X-ray diffractometry indicates the presence of two crystal domains, 60° rotated in-plane, in the Pt(1 1 1) layers which subsequently are transferred on the upperlaying YMO. Cross-section analysis by high-resolution transmission electron microscopy (HRTEM) of YMnO3/Pt/SrTiO3(1 1 1) shows high-quality epitaxy and sharp interfaces across the structure in the observed region. We present a detailed study of the epitaxial growth of the hexagonal YMO on the electrodes.
Resumo:
Dans certaines conditions pathologiques, telles que l'hypertension artérielle ou l'infarctus du myocarde, le coeur répond à une augmentation de la post-charge par des processus de remodelage aboutissant à une hypertrophie du ventricule gauche. L'hypertrophie cardiaque est caractérisée par une croissance hypertrophique des cardiomyocytes, ainsi que par une différenciation des fibroblastes en un phenotype présentant une capacité accrue de synthèse protéiques, nommés myofibroblastes. Ceci résulte en une accumulation excessive des constituants de la matrice extracellulaire, ou autrement dit fibrose. En raison de son effet délétère sur la contractilité du coeur, menant sur le long terme à une insuffisance cardiaque, de nombreux efforts ont été déployés, afin de définir les mécanismes moléculaires impliqués dans la réponse profibrotique. A ce jour, de nombreuses études indiquent que la petite GTPase RhoA pourrait être un médiateur important de la réponse profibrotique du myocarde. Cependant, les facteurs d'échanges impliqués dans la transduction de signaux profibrotiques, via la régulation de son activité au niveau des fibroblastes cardiaques, n'ont pas encore été identifiés. De précédentes études menées dans le laboratoire, ont identifiées une nouvelle protein d'ancrage de la PKA, exprimée majoritairement dans le coeur, nommée AKAP-Lbc. Il a été montré que cette protéine, en plus de sa fonction de protein d'ancrage, possédait une activité de facteur d'échange de nucléotide guanine (GEF) pour la petite GTPase RhoA. Au niveau des cardiomyocytes, il a été montré que l'AKAP-Lbc participe à une voie de signalisation pro-hypertrophique, incluant la sous-unité alpha de la protéine G hétérotrimerique G12 et RhoA. Chose intéressante, des observations antérieures à cette étude, indiquent que dans le coeur, l'AKAP-Lbc est également exprimée dans les fibroblastes. Cependant aucunes études n'a encore reporté de fonction pour ce facteur d'échange dans les fibroblastes cardiaques. Dans ce travail, les résultats obtenus indiquent que dans les fibroblastes cardiaques, I'activation de RhoA par l'AKAP-Lbc est impliquée dans la transmission de signaux profibrotiques, en aval des récépteurs à l'angiotensine II. En particulier, nous avons observé que la suppression de l'expression de l'AKAP-Lbc dans les fibroblastes ventriculaires de rat adultes, réduisait fortement Γ activation de Rho induite par l'angiotensine II, la déposition de collagène, la capacité migratoire des fibroblastes ainsi que leur différenciation en myofibroblastes. A notre connaissance, l'AKAP-Lbc est le premier RhoGEF identifié comme médiateur de la réponse profibrotique dans les fibroblastes cardiaques. - In pathological conditions such as chronic hypertension or myocardial infarction, the myocardium is subjected to various biomechanical and biochemical stresses, and undergoes an adverse ventricular remodelling process associated with cardiomyocytes hypertrophy and excess deposition of extracellular matrix proteins resulting in fibrosis. During the fibrotic response, cardiac fibroblasts differentiate into a more mobile and contractile phenotype termed myofibroblasts. These cells, possess a greater synthetic ability to produce ECM proteins and have been implicated in diseases with increased ECM deposition including cardiac fibrosis. Because fibrosis impairs myocardial contractility and is associated with the progression to heart failure, a major cause of lethality worldwide, many efforts have been made to define the molecular players involved in this process. During these last years, increasing evidence suggests a role for the small GTPase RhoA in mediating the fibrotic response in CFbs. However the identity of the exchange factors that modulate its activity and transduce fibrotic signals in CFbs is still unknown. Earlier work in our laboratory identified a novel PKA anchoring protein expressed in the heart termed AKAP-Lbc that has been shown to function as anchoring protein as well as a guanine nucleotide exchange factor (GEF) for the small GTPase RhoA. In response to several hypertrophic stimuli we have shown that RhoGEF activity of AKAP-Lbc mediated by Gan promotes the activation of a signaling pathway including RhoA, leading to cardiomyocytes hypertrophy. Within the heart, previous observations made in the laboratory indicated that AKAP-Lbc was also expressed in fibroblasts. However its role in cardiac fibroblasts remained to be determined. In the present study, we show that AKAP-Lbc is critical for activating RhoA and transducing profibrotic signals downstream of angiotensin II receptors in cardiac fibroblasts. In particular, our results indicate that suppression of AKAP-Lbc expression by infecting adult rat ventricular fibroblasts with lentiviruses encoding AKAP-Lbc specific short hairpin RNAs strongly reduces angiotensin II-induced RhoA activation, collagen deposition as well as cell migration and differentiation. These findings identify AKAP-Lbc as the first Rho-guanine nucleotide exchange factor involved in a profibrotic signalling pathway at the level of cardiac fibroblasts.
Resumo:
A study of the magneto-optical (MO) spectral response of Co nanoparticles embedded in MgO as a function of their size and concentration in the spectral range from 1.4 to 4.3 eV is presented. The nanoparticle layers were obtained by sputtering at different deposition temperatures. Transmission electron microscopy measurements show that the nanoparticles have a complex structure which consists of a crystalline core having a hexagonal close-packed structure and an amorphous crust. Using an effective-medium approximation we have obtained the MO constants of the Co nanoparticles. These MO constants are different from those of continuous Co layers and depend on the size of the crystalline core. We associate these changes with the size effect of the intraband contribution to the MO constants, related to a reduction of the relaxation time of the electrons into the nanoparticles.
Resumo:
The influence of premetallization surface preparation on the structural, chemical, and electrical properties of Au-nGaN interfaces has been investigated by x-ray photoemission spectroscopy (XPS), current-voltage measurement (I-V) and cross-section transmission electron microscopy (TEM). XPS analysis showed that the three GaN substrate treatments investigated i.e., ex situ hydrofluoric acid etch, in situ anneal in ultrahigh-vacuum (UHV), and in situ Ga reflux cleaning in UHV result in surfaces increasingly free of oxygen contamination. XPS and TEM characterization of Au-nGaN formed after the three premetallization surface treatments show that HF etching and UHV annealing produce abrupt, well-defined interfaces. Conversely, GaN substrate cleaning in a Ga flux results in Au/GaN intermixing. I-V characterization of Au¿nGaN contacts yields a Schottky barrier height of 1.25 eV with a very low-ideality factor and very good contact uniformity for the premetallization UHV anneal, while the Ga reflux cleaning results in a much lower barrier (0.85 eV), with poor ideality and uniformity. I-V and XPS results suggest a high density of acceptor states at the surface, which is further enhanced by UHV annealing. These results are discussed in the context of current models of Schottky barrier formation.
Resumo:
The magnetic exchange between epitaxial thin films of the multiferroic (antiferromagnetic and ferroelectric) hexagonal YMnO3 oxide and a soft ferromagnetic (FM) layer is used to couple the magnetic response of the FM layer to the magnetic state of the antiferromagnetic one. We will show that biasing the ferroelectric YMnO3 layer by an electric field allows control of the magnetic exchange bias and subsequently the magnetotransport properties of the FM layer. This finding may contribute to paving the way towards a new generation of electric-field controlled spintronic devices.
Resumo:
Highly transparent and stoichiometric boron nitride (BN) films were deposited on both electrodes (anode and cathode) of a radio-frequency parallel-plate plasma reactor by the glow discharge decomposition of two gas mixtures: B2H6-H2-NH3 and B2H6-N2. The chemical, optical, and structural properties of the films, as well as their stability under long exposition to humid atmosphere, were analyzed by x-ray photoelectron, infrared, and Raman spectroscopies; scanning and transmission electron microscopies; and optical transmittance spectrophotometry. It was found that the BN films grown on the anode using the B2H6-H2-NH3 mixture were smooth, dense, adhered well to substrates, and had a textured hexagonal structure with the basal planes perpendicular to the film surface. These films were chemically stable to moisture, even after an exposition period of two years. In contrast, the films grown on the anode from the B2H6-N2 mixture showed tensile stress failure and were very unstable in the presence of moisture. However, the films grown on the cathode from B2H6-H2-NH3 gases suffered from compressive stress failure on exposure to air; whereas with B2H6-N2 gases, adherent and stable cathodic BN films were obtained with the same crystallographic texture as anodic films prepared from the B2H6-H2-NH3 mixture. These results are discussed in terms of the origin of film stress, the effects of ion bombardment on the growing films, and the surface chemical effects of hydrogen atoms present in the gas discharge.
Resumo:
The substrate tuning technique was applied to a radio frequency magnetron sputtering system to obtain a variable substrate bias without an additional source. The dependence of the substrate bias on the value of the external impedance was studied for different values of chamber pressure, gas composition and rf input power. A qualitative explanation of the results is given, based on a simple model, and the role of the stray capacitance is clearly disclosed. Langmuir probe measurements show that this system allows independent control of the ion flux and the ion energy bombarding the growing film. For an argon flow rate of 2.8 sccm and a radio frequency power of 300 W (intermediate values of the range studied) the ion flux incident on the substrate was 1.3 X 1020-m-2-s-1. The maximum ion energy available in these conditions can be varied in the range 30-150 eV. As a practical application of the technique, BN thin films were deposited under different ion bombardment conditions. An ion energy threshold of about 80 eV was found, below which only the hexagonal phase was present in the films, while for higher energies both hexagonal and cubic phase were present. A cubic content of about 60% was found for an ion energy of 120 V.
Resumo:
The interaction between Hopf and Turing modes has been the subject of active research in recent years. We present here experimental evidence of the existence of mixed Turing-Hopf modes in a two-dimensional system. Using the photosensitive chlorine dioxide-iodine-malonic acid reaction (CDIMA) and external constant background illumination as a control parameter, standing spots oscillating in amplitude and with hexagonal ordering were observed. Numerical simulations in the Lengyel-Epstein model for the CDIMA reaction confirmed the results.
Resumo:
PURPOSE: In the radiopharmaceutical therapy approach to the fight against cancer, in particular when it comes to translating laboratory results to the clinical setting, modeling has served as an invaluable tool for guidance and for understanding the processes operating at the cellular level and how these relate to macroscopic observables. Tumor control probability (TCP) is the dosimetric end point quantity of choice which relates to experimental and clinical data: it requires knowledge of individual cellular absorbed doses since it depends on the assessment of the treatment's ability to kill each and every cell. Macroscopic tumors, seen in both clinical and experimental studies, contain too many cells to be modeled individually in Monte Carlo simulation; yet, in particular for low ratios of decays to cells, a cell-based model that does not smooth away statistical considerations associated with low activity is a necessity. The authors present here an adaptation of the simple sphere-based model from which cellular level dosimetry for macroscopic tumors and their end point quantities, such as TCP, may be extrapolated more reliably. METHODS: Ten homogenous spheres representing tumors of different sizes were constructed in GEANT4. The radionuclide 131I was randomly allowed to decay for each model size and for seven different ratios of number of decays to number of cells, N(r): 1000, 500, 200, 100, 50, 20, and 10 decays per cell. The deposited energy was collected in radial bins and divided by the bin mass to obtain the average bin absorbed dose. To simulate a cellular model, the number of cells present in each bin was calculated and an absorbed dose attributed to each cell equal to the bin average absorbed dose with a randomly determined adjustment based on a Gaussian probability distribution with a width equal to the statistical uncertainty consistent with the ratio of decays to cells, i.e., equal to Nr-1/2. From dose volume histograms the surviving fraction of cells, equivalent uniform dose (EUD), and TCP for the different scenarios were calculated. Comparably sized spherical models containing individual spherical cells (15 microm diameter) in hexagonal lattices were constructed, and Monte Carlo simulations were executed for all the same previous scenarios. The dosimetric quantities were calculated and compared to the adjusted simple sphere model results. The model was then applied to the Bortezomib-induced enzyme-targeted radiotherapy (BETR) strategy of targeting Epstein-Barr virus (EBV)-expressing cancers. RESULTS: The TCP values were comparable to within 2% between the adjusted simple sphere and full cellular models. Additionally, models were generated for a nonuniform distribution of activity, and results were compared between the adjusted spherical and cellular models with similar comparability. The TCP values from the experimental macroscopic tumor results were consistent with the experimental observations for BETR-treated 1 g EBV-expressing lymphoma tumors in mice. CONCLUSIONS: The adjusted spherical model presented here provides more accurate TCP values than simple spheres, on par with full cellular Monte Carlo simulations while maintaining the simplicity of the simple sphere model. This model provides a basis for complementing and understanding laboratory and clinical results pertaining to radiopharmaceutical therapy.
Resumo:
Moissanite (natural SiC) has been recovered from podiform chromitites of several ophiolite complexes, including the Luobusa and Donqiao ophiolites in Tibet, the Semail ophiolite in Oman and the United Arab Emirates, and the Ray-Iz ophiolite of the Polar Urals, Russia. Taking these new occurrences with the numerous earlier reports of moissanite in diamondiferous kimberlites leads to the conclusion that natural SiC is a widespread mineral in the Earth's mantle, which implies at least locally extremely low redox conditions. The ophiolite moissanite grains are mostly fragments (20 to 150 mu m) with one or more crystal faces, but some euhedral hexagonal grains have also been recovered. Twinned crystals are common in chromitites from the Luobusa ophiolite. The moissanite is rarely colorless, more commonly light bluish-gray to blue or green. Many grains contain inclusions of native Si and Fe-Si alloys (FeSi(2), Fe(3)Si(7)). Secondary ion mass spectrometric (SIMS) analysis shows that the ophiolite-hosted moissanite has a distinctive (13)C-depleted isotopic composition (delta(13)C from -18 to -35 parts per thousand, n=36), much lighter than the main carbon reservoir in the upper mantle (delta(13)C near -5 parts per thousand). The compiled data from moissanite from kimberlites and other mantle settings share the characteristic of strongly (13)C-depleted isotopic composition. This suggests that moissanite originates from a separate carbon reservoir in the mantle or that its formation involved strong isotopic fractionation. The degree of fractionation needed to produce the observed moissanite compositions from the main C-reservoir would be unrealistically large at the high temperatures required for moissanite formation. Subduction of biogenic carbonaceous material could potentially satisfy both the unusual isotopic and redox constraints on moissanite formation, but this material would need to stay chemically isolated from the upper mantle until it reached the high-T stability field of moissanite. The origin of moissanite in the mantle is still unsolved, but all evidence from the upper mantle indicates that it cannot have formed there, barring special and local redox conditions. We suggest, alternatively, that moissanite may have formed in the lower mantle, where the existence of (13)C-depleted carbon is strongly supported by studies of extraterrestrial carbon (Mars, Moon, meteorites). (C) 2009 Elsevier B. V. All rights reserved.