981 resultados para ground-state
Resumo:
Multiconfigurational SCF and second-order perturbation theory have been employed to study seven low-lying singlet and triplet electronic states of the Mo-2 molecule. The bond order of the ground state has been analyzed based on the effective bond order (EBO), indicating that a fully developed sextuple bond is formed between the two Mo atoms. The experimentally observed excited states a(3)Sigma(+)(u) and A(1)Sigma(+)(u) have been determined and the so-called (3)Lambda excited state identified as the b(3)Sigma(+)(u) state, in agreement with experimental expectations. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Folate is shown to react with singlet-excited state of riboflavin in a diffusion controlled reaction and with triplet-excited state of riboflavin in a somewhat slower reaction with (3)k(q) = 4.8 x 10(8) L mol(-1) s(-1) in aqueous phosphate buffer at pH 7.4, ionic strength of 0.2 mol L(-1), and 25 degrees C. Singlet quenching is assigned as photo-induced reductive electron transfer from ground state folate to singlet-excited riboflavin, while triplet quenching is assigned as one-electron transfer rather than hydrogen atom transfer from folate to triplet-excited riboflavin, as the reaction quantum yield, phi = 0.32, is hardly influenced by solvent change from water to deuterium oxide, phi = 0.37. Cyclic voltammetry showed an irreversible two-electron anodic process for folate, E = 1.14 V versus NHE at a scan-rate of 50 mV s(-1), which appears to be kinetically controlled by the heterogeneous electron transfer from the substrates to the electrode. Main products of folate photooxidation sensitized by riboflavin were pterin-6-carboxylic acid and p-aminobenzoyl-L-glutamic acid as shown by liquid chromatographic ion-trap mass spectrometry (LC-IT-MS).
Resumo:
We propose a coherent beam splitter for polarized heteronuclear molecules based on a stimulated Raman adiabatic passage scheme that uses a tripod linkage of electrotranslational molecular states. We show that for strongly polarized molecules the rotational dynamics imposes significantly larger Rabi frequencies than would otherwise be expected, but within this limitation, a full transfer of the molecules to two counterpropagating ground-state wave packets is possible.
Resumo:
In this work, I consider the center-of-mass wave function for a homogenous sphere under the influence of the self-interaction due to Newtonian gravity. I solve for the ground state numerically and calculate the average radius as a measure of its size. For small masses, M≲10−17 kg, the radial size is independent of density, and the ground state extends beyond the extent of the sphere. For masses larger than this, the ground state is contained within the sphere and to a good approximation given by the solution for an effective radial harmonic-oscillator potential. This work thus determines the limits of applicability of the point-mass Newton Schrödinger equations for spherical masses. In addition, I calculate the fringe visibility for matter-wave interferometry and find that in the low-mass case, interferometry can in principle be performed, whereas for the latter case, it becomes impossible. Based on this, I discuss this transition as a possible boundary for the quantum-classical crossover, independent of the usually evoked environmental decoherence. The two regimes meet at sphere sizes R≈10−7 m, and the density of the material causes only minor variations in this value.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The high-energy states of a shallow donor in a GaAs/Ga0.7Al0.3As multiple-quantum-well structure subjected to a magnetic field in the growth direction are studied both theoretically and experimentally. Effects due to higher confinement subbands as well as due to the electron-phonon interaction are investigated. We show that most of the peaks in the infrared photoconductivity spectrum are due to direct transitions from the ground state to the m = +/-1 magnetodonor states associated with the first subband, but transitions to the m = +/-1 states of the third subband are also apparent. The remaining photoconductivity peaks are explained by phonon-assisted impurity transitions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Calculation for the electronic excitation of the ground state of H-2 to B (1) Sigma(u)(+) and b(3) Sigma(u)(+) states by positronium- (Ps) atom impact has been carried out using the first Born approximation considering discrete Ps excitations up to n = 6 and Ps ionization in the final state. To include the effect of electron exchange, we propose an alternative approximation scheme in the light of the Rudge approach, which takes into account the composite nature of the Ps-atom projectile.
Resumo:
In this work we rederive the Lamb-Retherford energy shift for an atomic electron in the presence of a thermal radiation. Using the Dalibard, Dupont-Roc and Cohen-Tannoudji (DDC) formalism, where physical observables are expressed as convolutions of suitable statistical functions, we construct the electromagnetic field propagator of thermo field dynamics in the Coulomb gauge in order to investigate finite temperature effects on the atomic energy levels. In the same context, we also analyze the problem of the ground state stability.
Resumo:
The mapping of the Wigner distribution function (WDF) for a given bound state onto a semiclassical distribution function (SDF) satisfying the Liouville equation introduced previously by us is applied to the ground state of the Morse oscillator. The purpose of the present work is to obtain values of the potential parameters represented by the number of levels in the case of the Morse oscillator, for which the SDF becomes a faithful approximation of the corresponding WDF. We find that for a Morse oscillator with one level only, the agreement between the WDF and the mapped SDF is very poor but for a Morse oscillator of ten levels it becomes satisfactory. We also discuss the limit h --> 0 for fixed potential parameters.
Resumo:
A new version of the relaxation algorithm is proposed in order to obtain the stationary ground-state solutions of nonlinear Schrodinger-type equations, including the hyperbolic solutions. In a first example, the method is applied to the three-dimensional Gross-Pitaevskii equation, describing a condensed atomic system with attractive two-body interaction in a non-symmetrical trap, to obtain results for the unstable branch. Next, the approach is also shown to be very reliable and easy to be implemented in a non-symmetrical case that we have bifurcation, with nonlinear cubic and quintic terms. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A three-parameter correlated wave function for the helium ground state is used to study the scattering reaction e(+) + He --> He+ + Ps, where Ps stands for positronium atom. An exact analytical expression is constructed for the first Born scattering amplitude for Ps formation from helium. Based on this numerical results are presented for both differential and total cross-sections. It is demonstrated that the inner electronic correlation of the target atom plays a crucial role in explaining the discrepency between theory and experiment.