941 resultados para giant magneto-impedance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuing development of new materials makes systems lighter and stronger permitting more complex systems to provide more functionality and flexibility that demands a more effective evaluation of their structural health. Smart material technology has become an area of increasing interest in this field. The combination of smart materials and artificial neural networks can be used as an excellent tool for pattern recognition, turning their application adequate for monitoring and fault classification of equipment and structures. In order to identify the fault, the neural network must be trained using a set of solutions to its corresponding forward Variational problem. After the training process, the net can successfully solve the inverse variational problem in the context of monitoring and fault detection because of their pattern recognition and interpolation capabilities. The use of structural frequency response function is a fundamental portion of structural dynamic analysis, and it can be extracted from measured electric impedance through the electromechanical interaction of a piezoceramic and a structure. In this paper we use the FRF obtained by a mathematical model (FEM) in order to generate the training data for the neural networks, and the identification of damage can be done by measuring electric impedance, since suitable data normalization correlates FRF and electrical impedance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polycrystalline sample of Nd3/2Bi3/2Fe5O12 was prepared by a high- temperature solid-state reaction technique. Preliminary X-ray structural analysis exhibits the formation of a single-phase tetragonal structure at room temperature. Microstructural analysis by scanning electron microscopy shows that the sintered sample has well defined grains. These grains are distributed uniformly throughout the surface of the sample. Detailed studies of dielectric response at various frequencies and temperatures exhibit a dielectric anomaly at 400 A degrees C. The electrical properties (impedance, modulus and conductivity) of the material were studied using a complex impedance spectroscopy technique. These studies reveal a significant contribution of grain and grain boundary effects in the material. The frequency dependent plots of modulus and the impedance loss show that the conductivity relaxation is of non-Debye type. Studies of electrical conductivity with temperature demonstrate that the compound exhibits Arrhenius-type of electrical conductivity. Study of ac conductivity with frequency suggests that the material obeys Jonscher's universal power law.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycrystalline La3/2Bi3/2Fe5O12 (LBIO) compound was prepared by a high-temperature solid-state reaction technique. The complex impedance of LBIO was measured over a wide temperature (i.e., room temperature to 500 C) and frequencies (i.e., 10(2)-10(6) Hz) ranges. This study takes advantage of plotting ac data simultaneously in the form of impedance and modulus spectroscopic plots and obey non-Debye type of relaxation process. The Nyquist's plot showed the presence of grain effects in the material at high temperature. The ac conductivity spectrum was found to obey Jonscher's universal power law. The dc conductivity was found to increase with rise in temperature. The activation energy of the compound was found to be 0.24 and 0.51 eV in the low and high-temperature region, respectively, for conduction process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: A giant fusiform aneurysm in the posterior cerebral artery (PCA) is rare, as is fenestration of the PCA and basilar apex variation. We describe the angiographic and surgical findings of a giant fusiform aneurysm in the P1-P2 PCA segment associated with PCA bilateral fenestration and superior cerebellar artery double origin.CLINICAL PRESENTATION: A 26-year-old woman presented with a 2-month history of visual blurring. Digital subtraction angiography showed a giant (2.5 cm) fusiform PCA aneurysm in the right P1-P2 segment. The 3-dimensional view showed a caudal fusion pattern from the upper portion of the basilar artery associated with a bilateral long fenestration of the P1 and P2 segments and superior cerebellar artery double origin.INTERVENTION: Surgical trapping of the right P1 -P2 segment, including the posterior communicating artery, was performed by a pretemporal approach. Angiograms performed 3 and 13 months after surgery showed complete aneurysm exclusion, and the PCA was permeated and filled the PCA territory. Clinical follow-up at 14 months showed the patient with no deficits and a return to normal life.CONCLUSION: To our knowledge, this is the first report of a giant fusiform aneurysm of the PCA associated with P1-P2 segment fenestration and other variations of the basilar apex (bilateral superior cerebellar artery duplication and caudal fusion). Comprehension of the embryology and anatomy of the PCA and its related vessels and branches is fundamental to the decision-making process for a PCA aneurysm, especially when parent vessel occlusion is planned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)