965 resultados para fungus garden
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The genus Mycetagroicus is perhaps the least known of all fungus-growing ant genera, having been first described in 2001 from museum specimens. A recent molecular phylogenetic analysis of the fungus-growing ants demonstrated that Mycetagroicus is the sister to all higher attine ants (Trachymyrmex, Sericomyrmex, Acromyrmex, Pseudoatta, and Atta), making it of extreme importance for understanding the transition between lower and higher attine agriculture. Four nests of Mycetagroicus cerradensis near Uberlandia, Minas Gerais, Brazil were excavated, and fungus chambers for one were located at a depth of 3.5 meters. Based on its lack of gongylidia (hyphal-tip swellings typical of higher attine cultivars), and a phylogenetic analysis of the ITS rDNA gene region, M. cerradensis cultivates a lower attine fungus in Clade 2 of lower attine (G3) fungi. This finding refines a previous estimate for the origin of higher attine agriculture, an event that can now be dated at approximately 21-25 mya in the ancestor of extant species of Trachymyrmex and Sericomyrmex.
Resumo:
The possible roles played by yeasts in attine ant nests are mostly unknown. Here we present our investigations on the plant polysaccharide degradation profile of 82 yeasts isolated from fungus gardens of Atta and Acromyrmex species to demonstrate that yeasts found in ant nests may play the role of making nutrients readily available throughout the garden and detoxification of compounds that may be deleterious to the ants and their fungal cultivar. Among the yeasts screened, 65% exhibited cellulolytic enzymes, 44% exhibited pectinolytic activity while 27% and 17% possess enzyme systems for the degradation of protease and amylase, respectively. Galacturonic acid, which had been reported in previous work to be poorly assimilated by the ant fungus and also to have a negative effect on ants' survival, was assimilated by 64% and 79% of yeasts isolated from nests of A. texana and Acromyrmex respectively. Our results suggest that yeasts found in ant nests may participate in generation of nutrients and removal of potentially toxic compounds, thereby contributing to the stability of the complex microbiota found in the leaf-cutting ant nests.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Proteases are one of the most important groups of industrial enzymes, with considerable application in the food industry. The aim of this work was to study a novel protease produced by the thermophilic fungus, Thermoascus aurantiacus, through solid-state fermentation (SSF). The enzyme acted optimally at pH 5.5 and 60 degrees C it was stable up to 60 degrees C for 1 h and in the pH range 3.0-9.5. To elucidate the enzyme's proteolytic activity, its hydrolytic profile on bovine casein, an important protein in the food industry, was studied by enzymatic hydrolysis on skim milk, analyzed by gel electrophoresis (UREA-PAGE), which clearly showed that the protease does not have the same specificity as bovine chymosin. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
An extracellular (conidial) and an intracellular (mycelial) alkaline phosphatase from the thermophilic fungus Scytalidium thermophilum were purified by DEAE-cellulose and Concanavalin A-Sepharose chromatography. These enzymes showed allosteric behavior either in the presence or absence of MgCl2, BaCl2, CuCl2, and ZnCl2. All of these ions increased the maximal velocity of both enzymes. The molecular masses of the conidial and mycelial enzymes, estimated by gel filtration, were 162 and 132 kDa, respectively. Both proteins migrated on SDS-PAGE as a single polypeptide of 63 and 58.5 kDa, respectively, suggesting that these enzymes were dimers of identical subunits. The best substrate for the conidial and mycelial phosphatases was p-nitrophenylphosphate, but,beta -glycerophosphate and other phosphorylated compounds also served as substrates. The optimum pH for the conidial and mycelial alkaline phosphatases was 10.0 and 9.5 in the presence of AMPOL buffer, and their carbohydrate contents were about 54% and 63%, respectively. The optimum temperature was 70-75 degreesC for both activities. The enzymes were fully stable up to 1 h at 60 degreesC. These and other properties suggested that the alkaline phosphatases of S. thermophilum might be suitable for biotechnological applications.