937 resultados para effective medium theory
Resumo:
It has been proposed that inertial clustering may lead to an increased collision rate of water droplets in clouds. Atmospheric clouds and electrosprays contain electrically charged particles embedded in turbulent flows, often under the influence of an externally imposed, approximately uniform gravitational or electric force. In this thesis, we present the investigation of charged inertial particles embedded in turbulence. We have developed a theoretical description for the dynamics of such systems of charged, sedimenting particles in turbulence, allowing radial distribution functions to be predicted for both monodisperse and bidisperse particle size distributions. The governing parameters are the particle Stokes number (particle inertial time scale relative to turbulence dissipation time scale), the Coulomb-turbulence parameter (ratio of Coulomb ’terminalar speed to turbulence dissipation velocity scale), and the settling parameter (the ratio of the gravitational terminal speed to turbulence dissipation velocity scale). For the monodispersion particles, The peak in the radial distribution function is well predicted by the balance between the particle terminal velocity under Coulomb repulsion and a time-averaged ’drift’ velocity obtained from the nonuniform sampling of fluid strain and rotation due to finite particle inertia. The theory is compared to measured radial distribution functions for water particles in homogeneous, isotropic air turbulence. The radial distribution functions are obtained from particle positions measured in three dimensions using digital holography. The measurements support the general theoretical expression, consisting of a power law increase in particle clustering due to particle response to dissipative turbulent eddies, modulated by an exponential electrostatic interaction term. Both terms are modified as a result of the gravitational diffusion-like term, and the role of ’gravity’ is explored by imposing a macroscopic uniform electric field to create an enhanced, effective gravity. The relation between the radial distribution functions and inward mean radial relative velocity is established for charged particles.
Resumo:
Nanoparticles are fascinating where physical and optical properties are related to size. Highly controllable synthesis methods and nanoparticle assembly are essential [6] for highly innovative technological applications. Among nanoparticles, nonhomogeneous core-shell nanoparticles (CSnp) have new properties that arise when varying the relative dimensions of the core and the shell. This CSnp structure enables various optical resonances, and engineered energy barriers, in addition to the high charge to surface ratio. Assembly of homogeneous nanoparticles into functional structures has become ubiquitous in biosensors (i.e. optical labeling) [7, 8], nanocoatings [9-13], and electrical circuits [14, 15]. Limited nonhomogenous nanoparticle assembly has only been explored. Many conventional nanoparticle assembly methods exist, but this work explores dielectrophoresis (DEP) as a new method. DEP is particle polarization via non-uniform electric fields while suspended in conductive fluids. Most prior DEP efforts involve microscale particles. Prior work on core-shell nanoparticle assemblies and separately, nanoparticle characterizations with dielectrophoresis and electrorotation [2-5], did not systematically explore particle size, dielectric properties (permittivity and electrical conductivity), shell thickness, particle concentration, medium conductivity, and frequency. This work is the first, to the best of our knowledge, to systematically examine these dielectrophoretic properties for core-shell nanoparticles. Further, we conduct a parametric fitting to traditional core-shell models. These biocompatible core-shell nanoparticles were studied to fill a knowledge gap in the DEP field. Experimental results (chapter 5) first examine medium conductivity, size and shell material dependencies of dielectrophoretic behaviors of spherical CSnp into 2D and 3D particle-assemblies. Chitosan (amino sugar) and poly-L-lysine (amino acid, PLL) CSnp shell materials were custom synthesized around a hollow (gas) core by utilizing a phospholipid micelle around a volatile fluid templating for the shell material; this approach proves to be novel and distinct from conventional core-shell models wherein a conductive core is coated with an insulative shell. Experiments were conducted within a 100 nl chamber housing 100 um wide Ti/Au quadrapole electrodes spaced 25 um apart. Frequencies from 100kHz to 80MHz at fixed local field of 5Vpp were tested with 10-5 and 10-3 S/m medium conductivities for 25 seconds. Dielectrophoretic responses of ~220 and 340(or ~400) nm chitosan or PLL CSnp were compiled as a function of medium conductivity, size and shell material.
Resumo:
BACKGROUND: Current evidence suggests that endothelial progenitor cells (EPC) contribute to ischemic tissue repair by both secretion of paracrine factors and incorporation into developing vessels. We tested the hypothesis that cell-free administration of paracrine factors secreted by cultured EPC may achieve an angiogenic effect equivalent to cell therapy. METHODOLOGY/PRINCIPAL FINDINGS: EPC-derived conditioned medium (EPC-CM) was obtained from culture expanded EPC subjected to 72 hours of hypoxia. In vitro, EPC-CM significantly inhibited apoptosis of mature endothelial cells and promoted angiogenesis in a rat aortic ring assay. The therapeutic potential of EPC-CM as compared to EPC transplantation was evaluated in a rat model of chronic hindlimb ischemia. Serial intramuscular injections of EPC-CM and EPC both significantly increased hindlimb blood flow assessed by laser Doppler (81.2+/-2.9% and 83.7+/-3.0% vs. 53.5+/-2.4% of normal, P<0.01) and improved muscle performance. A significantly increased capillary density (1.62+/-0.03 and 1.68+/-0.05/muscle fiber, P<0.05), enhanced vascular maturation (8.6+/-0.3 and 8.1+/-0.4/HPF, P<0.05) and muscle viability corroborated the findings of improved hindlimb perfusion and muscle function. Furthermore, EPC-CM transplantation stimulated the mobilization of bone marrow (BM)-derived EPC compared to control (678.7+/-44.1 vs. 340.0+/-29.1 CD34(+)/CD45(-) cells/1x10(5) mononuclear cells, P<0.05) and their recruitment to the ischemic muscles (5.9+/-0.7 vs. 2.6+/-0.4 CD34(+) cells/HPF, P<0.001) 3 days after the last injection. CONCLUSIONS/SIGNIFICANCE: Intramuscular injection of EPC-CM is as effective as cell transplantation for promoting tissue revascularization and functional recovery. Owing to the technical and practical limitations of cell therapy, cell free conditioned media may represent a potent alternative for therapeutic angiogenesis in ischemic cardiovascular diseases.
Resumo:
According to Bandura (1997) efficacy beliefs are a primary determinant of motivation. Still, very little is known about the processes through which people integrate situational factors to form efficacy beliefs (Myers & Feltz, 2007). The aim of this study was to gain insight into the cognitive construction of subjective group-efficacy beliefs. Only with a sound understanding of those processes is there a sufficient base to derive psychological interventions aimed at group-efficacy beliefs. According to cognitive theories (e.g., Miller, Galanter, & Pribram, 1973) individual group-efficacy beliefs can be seen as the result of a comparison between the demands of a group task and the resources of the performing group. At the center of this comparison are internally represented structures of the group task and plans to perform it. The empirical plausibility of this notion was tested using functional measurement theory (Anderson, 1981). Twenty-three students (M = 23.30 years; SD = 3.39; 35 % females) of the University of Bern repeatedly judged the efficacy of groups in different group tasks. The groups consisted of the subjects and another one to two fictive group members. The latter were manipulated by their value (low, medium, high) in task-relevant abilities. Data obtained from multiple full factorial designs were structured with individuals as second level units and analyzed using mixed linear models. The task-relevant abilities of group members, specified as fixed factors, all had highly significant effects on subjects’ group-efficacy judgments. The effect sizes of the ability factors showed to be dependent on the respective abilities’ importance in a given task. In additive tasks (Steiner, 1972) group resources were integrated in a linear fashion whereas significant interaction between factors was obtained in interdependent tasks. The results also showed that people take into account other group members’ efficacy beliefs when forming their own group-efficacy beliefs. The results support the notion that personal group-efficacy beliefs are obtained by comparing the demands of a task with the performing groups’ resources. Psychological factors such as other team members’ efficacy beliefs are thereby being considered task relevant resources and affect subjective group-efficacy beliefs. This latter finding underlines the adequacy of multidimensional measures. While the validity of collective efficacy measures is usually estimated by how well they predict performances, the results of this study allow for a somewhat internal validity criterion. It is concluded that Information Integration Theory holds potential to further help understand people’s cognitive functioning in sport relevant situations.
Resumo:
Traditional methods do not actually measure peoples’ risk attitude naturally and precisely. Therefore, a fuzzy risk attitude classification method is developed. Since the prospect theory is usually considered as an effective model of decision making, the personalized parameters in prospect theory are firstly fuzzified to distinguish people with different risk attitudes, and then a fuzzy classification database schema is applied to calculate the exact value of risk value attitude and risk be- havior attitude. Finally, by applying a two-hierarchical clas- sification model, the precise value of synthetical risk attitude can be acquired.
Resumo:
We review the failure of lowest order chiral SU(3)L ×SU(3)R perturbation theory χPT3 to account for amplitudes involving the f0(500) resonance and O(mK) extrapolations in momenta. We summarize our proposal to replace χPT3 with a new effective theory χPTσ based on a low-energy expansion about an infrared fixed point in 3-flavour QCD. At the fixed point, the quark condensate ⟨q̅q⟩vac ≠ 0 induces nine Nambu-Goldstone bosons: π,K,η and a QCD dilaton σ which we identify with the f0(500) resonance. We discuss the construction of the χPTσ Lagrangian and its implications for meson phenomenology at low-energies. Our main results include a simple explanation for the ΔI = 1/2 rule in K-decays and an estimate for the Drell-Yan ratio in the infrared limit.
Resumo:
We report an electrochemical gating approach with [similar]100% efficiency to tune the conductance of single-molecule 4,4′-bipyridine junctions using scanning-tunnelling-microscopy break junction technique. Density functional theory calculation suggests that electrochemical gating aligns molecular frontier orbitals relative to the electrode Fermi-level, switching the molecule from an off resonance state to “partial” resonance.
Resumo:
Overcoming a crisis situation in which the socioemotional wealth (SEW) of a family is at risk can be threatened by a lack of formal crisis procedures, which can increase the probability of organizational decline. Thus, not being prepared for a crisis situation may be a critical factor in the long-term survival of family firms. From a corporate governance perspective, supervisory boards may achieve higher levels of crisis readiness. Applying the resourced-based view and SEW theory, we analyze the relationship between family ownership and formalized crisis procedures in 150 small and medium-sized German firms. Our results show that formalized crisis procedures decrease as family ownership increases. Including supervisory boards in our analysis, we find a significant moderating effect of supervisory boards on the relationship between family ownership and formalized crisis procedures. Specifically, our results suggest that family firms with supervisory boards show similar levels of formalized crisis procedures as non-family firms with supervisory boards. In contrast, family firms without supervisory boards exhibit lower levels of formalized crisis procedures compared with non-family firms without supervisory boards. We also discuss managerial implications, limitations, and future research.
Resumo:
In this article, we present a new microscopic theoretical approach to the description of spin crossover in molecular crystals. The spin crossover crystals under consideration are composed of molecular fragments formed by the spin-crossover metal ion and its nearest ligand surrounding and exhibiting well defined localized (molecular) vibrations. As distinguished from the previous models of this phenomenon, the developed approach takes into account the interaction of spin-crossover ions not only with the phonons but also a strong coupling of the electronic shells with molecular modes. This leads to an effective coupling of the local modes with phonons which is shown to be responsible for the cooperative spin transition accompanied by the structural reorganization. The transition is characterized by the two order parameters representing the mean values of the products of electronic diagonal matrices and the coordinates of the local modes for the high- and low-spin states of the spin crossover complex. Finally, we demonstrate that the approach provides a reasonable explanation of the observed spin transition in the [Fe(ptz)6](BF4)2 crystal. The theory well reproduces the observed abrupt low-spin → high-spin transition and the temperature dependence of the high-spin fraction in a wide temperature range as well as the pronounced hysteresis loop. At the same time within the limiting approximations adopted in the developed model, the evaluated high-spin fraction vs. T shows that the cooperative spin-lattice transition proves to be incomplete in the sense that the high-spin fraction does not reach its maximum value at high temperature.
Resumo:
Background: ASSIP is a manualized brief therapy based on a model of suicide as goal-directed action, aimed at establishing a therapeutic alliance in a patient-oriented, collaborative approach. The main goals of the three-session program ASSIP are for patients to understand, from an observer’s position, patterns leading to a suicidal crisis, recognize triggers and warning signs, and to establish individual safety strategies for future suicidal crises. An ongoing therapeutic support is provided with regular letters over 24 months. Method: The study was conducted in a naturalistic setting. 120 Patients were randomly assigned to an intervention group (60 participants) treated with ASSIP combined with follow-up contact through letters, and a control group (60 participants) receiving a single session of clinical assessment. Both groups had treatment as usual. Patients completed a set of psychosocial and clinical questionnaires every six months over a period of 24 months. Results: In the ASSIP group 5 patients made a total of 5 reattempts, compared to 15 patients with 41 reattempts in the control group. The survival analysis yielded a significant difference with a Wald Chi2 of .000003. The ASSIP group had significantly lower suicidal ideation and fewer days of inpatient treatment compared to the control group. Higher scores in the Penn Helping Alliance Questionnaire were associated with lower suicidal ideation during follow-up. Conclusions: ASSIP is a highly effective brief therapy for patients with recent suicide attempts. Forming a strong therapeutic alliance is considered to be a major factor for outcome. ASSIP can be used with minimal training by experienced therapists. An English version of the manual will be published in May 2015.
Resumo:
We investigate the transition from unitary to dissipative dynamics in the relativistic O(N) vector model with the λ(φ2)2 interaction using the nonperturbative functional renormalization group in the real-time formalism. In thermal equilibrium, the theory is characterized by two scales, the interaction range for coherent scattering of particles and the mean free path determined by the rate of incoherent collisions with excitations in the thermal medium. Their competition determines the renormalization group flow and the effective dynamics of the model. Here we quantify the dynamic properties of the model in terms of the scale-dependent dynamic critical exponent z in the limit of large temperatures and in 2≤d≤4 spatial dimensions. We contrast our results to the behavior expected at vanishing temperature and address the question of the appropriate dynamic universality class for the given microscopic theory.
Resumo:
The impact of health promotion programs is related to both program effectiveness and the extent to which the program is implemented among the target population. The purpose of this dissertation was to describe the development and evaluation of a school-based program diffusion intervention designed to increase the rate of dissemination and adoption of the Child and Adolescent Trial for Cardiovascular Health, or CATCH program (recently renamed the Coordinated Approach to Child Health). ^ The first study described the process by which schools across the state of Texas spontaneously began to adopt the CATCH program after it was tested and proven effective in a multi-site randomized efficacy trial. A survey of teachers and administrator representatives of all schools on record that purchased the CATCH program, but were not involved in the efficacy trial, was used to find out who brought CATCH into the schools, how they garnered support for its adoption, why they decided to adopt the program, and what was involved in deciding to adopt. ^ The second study described how the Intervention Mapping framework guided the planning, development and implementation of a program for the diffusion of CATCH. An iterative process was used to integrate theory, literature, the experience of project staff and data from the target population into a meaningful set of program determinants and performance objectives. Proximal program objectives were specified and translated into both media and interpersonal communication strategies for program diffusion. ^ The third study assessed the effectiveness of the diffusion program in a case-comparison design. Three of the twenty Education Service Center regions in Texas were chosen, selected based on similar demographic criteria, and were followed for adoption of the CATCH curriculum. One of these regions received the full media and interpersonal channel intervention; a second received a reduced media-only intervention, and a third received no intervention. Results suggested the use of the interpersonal channels with media follow-up is an effective means to facilitate program dissemination and adoption. The media-alone condition was not effective in facilitating program adoption. ^
Resumo:
It is widely recognized that trade credit is an important financial mechanism, particularly in developing economies and transition economies where institutions are weak. This paper documents theoretical analysis and empirical accounts on what facilitates an effective supply of trade credit based on original surveys conducted in P.R. of China. Our theory predicts that trade volume and trade credit are increasing function of cash held by the buyer and enforcement technology of the seller. Furthermore, if the state sector’s enforcement technology is high, it has positive external effect to expand the volumes of trade credit and trades in the whole economy. From the data, we found that government made active commitment in enforcement of trade credit contract and the government owned firms are main supplier and receivers of trade credit, which suggest that enforcement by government and state sector were effective against presumptions in the previous literatures.