961 resultados para copper(II) and cobalt(II) complexes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study on the electrochemical behavior of histamine species in aqueous medium is described. A glassy carbon electrode chemically modified with copper (II) hexacyanoferrate (CuHCFe) film and covered with Nafion® film was employed. The interaction between the analyte and the CuHCFe film can be demonstrated by a decrease in both the cathodic and anodic peak currents at 0.68V (vs. Ag/AgCl), attributed to the film and the appearance of new peak current at 0.47V. Cyclic voltammetric parameters obtained for histamine indicate the formation of stable complex between histamine adsorbed at the electrode surface. The dependence of peak currents on the concentration of the analyte is not linear in the employed work range, indicating the presence of a coupled chemical reaction in the electrodic process. © 2010 by ESG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Descreve-se um eletrodo de carbono modificado com fosfato de cobre (II) imobilizado em uma resina de poliéster (Cu3(PO4)2-Poly) para a determinação de rutina em amostras farmacêuticas por voltametria de onda quadrada. O eletrodo modificado permite a determinação de rutina em potencial (0.20 V vs Ag / AgCl (3,0 mol L-1 KCl)) menor que o observado em um eletrodo não modificado. Verificou-se que a corrente de pico foi linear com a concentração de rutina na faixa de 9,9 × 10-8 a 2,5 × 10-6 mol L-1, com um limite de detecção de 1,2 × 10-8 mol L-1. A resposta do eletrodo foi estável, sem variação significativa dentro de várias horas de operação contínua. A morfologia da superfície do eletrodo modificado foi caracterizada por microscopia eletrônica de varredura (MEV) e pelo sistema de energia dispersiva de raios-X (EDX). Os resultados obtidos foram precisos e exatos. Ademais, estes resultados estão de acordo com aqueles obtidos pelo método cromatográfico a um nível de confiança de 95%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2-(Diphenylphosphinomethyl)aniline. H2L1, reacts with [RuCl2(PPh3)(3)] to yield the monomeric complexes [RuCl2(H2L1)(PPh3)(CH3CN)], [RuCl2(H2L1)(2)]and the chloro-bridged dimer [(H2L1)(PPh3)Ru(mu-Cl)(2)Ru(PPh3) (H2L1)] depending on the conditions applied. Exclusively the monochelate [RuCl2 (H2L1)(dmso)(2)] is formed during reactions of H2L1 with [RuCl2(dmso)(4)]. H2L1 acts as a neutral, bidentate ligand in all complexes. The products are studied spectroscopically and by X-ray diffraction. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compounds [NH3(CH2)4NH3]Cu3(hedp)2·2H2O (1) and [NH3(CH2)3NH3]Cu3(hedp)2·3.5H2O (2), where hedp represents 1-hydroxyethylidenediphosphonate, exhibit two-dimensional structures closely related to each other. The anionic layers with composition {Cu3(hedp)2}n2n- contain four- and eight-membered rings assembled from vertex-sharing {CuO4} units and {CPO3} tetrahedra. The protonated diamines and lattice water fill the interlayer spaces. Crystal data for 2:  space group P1̄, a = 8.0315(4), b = 11.3713(6), c = 13.3117(7) Å, α = 97.122(1), β = 103.187(1), γ = 108.668(1)°, V = 1095.5(1) Å3, Z = 2. Magnetic properties of the two compounds have been investigated. Both show typical metamagnetic behaviors at low temperature. The critical field at which the antiferromagnetic ground-state switches to a ferrimagnetic state is ∼48 Oe for 1 and 185 Oe for 2 at about 2 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transition metals such as Fe, Cu, Mn, Ni, or Co are essential nutrients, as they are constitutive elements of a significant fraction of cell proteins. Such metals are present in the active site of many enzymes, and also participate as structural elements in different proteins. From a chemical point of view, metals have a defined order of affinity for binding, designated as the Irving-Williams series (Irving and Williams, 1948) Mg2+ menor que Mn2+ menor que Fe2+ menor que Co2+ menor que Ni2+ menor que Cu2+mayor queZn2+ Since cells contain a high number of different proteins harbouring different metal ions, a simplistic model in which proteins are synthesized and metals imported into a ?cytoplasmic soup? cannot explain the final product that we find in the cell. Instead we need to envisage a complex model in which specific ligands are present in definite amounts to leave the right amounts of available metals and protein binding sites, so specific pairs can bind appropriately. A critical control on the amount of ligands and metal present is exerted through specific metal-responsive regulators able to induce the synthesis of the right amount of ligands (essentially metal binding proteins), import and efflux proteins. These systems are adapted to establish the metal-protein equilibria compatible with the formation of the right metalloprotein complexes. Understanding this complex network of interactions is central to the understanding of metal metabolism for the synthesis of metalloenzymes, a key topic in the Rhizobium-legume symbiosis. In the case of the Rhizobium leguminosarum bv viciae (Rlv) UPM791 -Pisum sativum symbiotic system, the concentration of nickel in the plant nutrient solution is a limiting factor for hydrogenase expression, and provision of high amounts of this element to the plant nutrient solution is required to ensure optimal levels of enzyme synthesis (Brito et al., 1994).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chiral complexes formed by privileged phosphoramidites and silver triflate or silver benzoate are excellent catalysts for the general 1,3-dipolar cycloaddition between azomethine ylides generated from α-amino acid-derived imino esters and nitroalkenes affording with high dr the exo-cycloadducts 4,5-trans-2,5-cis-4-nitroprolinates in high ee at room temperature. In general, better results are obtained using silver rather than copper(II) complexes. In many cases the exo-cycloadducts can be obtained in enantiomerically pure form just after simple recrystallization. The mechanism and the justification of the experimentally observed stereodiscrimination of the process are supported by DFT calculations. These enantiomerically enriched exo-nitroprolinates can be used as reagents for the synthesis of nitropiperidines, by ester reduction and ring expansion, which are inhibitors of farnesyltransferase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New tin(IV) complexes of empirical formula, Sn(NNS)I-3 (NNS = anionic forms of the 2-quinolinecarboxaldehyde Schiff bases of S-methyl- and S-benzyldithiocarbazate) have been prepared and characterized by a variety of physico-chemical techniques. In the solid state, the Schiff bases exist as the thione tautomer but in solution and in the presence of tin(IV) iodide they convert to the thiol tautomer and coordinate to the tin atom in their deprotonated thiolate forms. The structures of the free ligand, Hqaldsbz and its triiodotin(IV) complex, [Sn(qaldsbz)I-3] have been determined by X-ray diffraction. The complex, [Sn(qaldsbz)I-3] has a distorted octahedral structure with the Schiff base coordinated to the tin atom as a uninegatively charged tridentate chelating agent via the quinoline nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom. The three iodo ligands are coordinated meridionally to the tin atom. The distortion from an ideal octahedral geometry of [Sn(qaldsbz)I-3] is attributed to the restricted bite size of the tridentate Schiff base ligand. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New mixed-ligand copper(II) complexes of empirical formulas [Cu(pysme)(sac) (CH3OH)] and [Cu(6mptsc)(sac)](2) have been synthesized and characterized by conductance, magnetic, IR and electronic spectroscopic techniques. X-ray crystallographic structure analyses of these complexes indicate that in both complexes the copper(II) ions adopt a five-coordinate distorted square-pyramidal geometry with an N3SO donor environment. The Schiff bases are coordinated to the copper(II) ions as tridentate NNS chelates via the pyridine nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom. In the monomeric [Cu(pysme)(sac)(MeOH)] complex, the saccharinate anion acts as a monodentate ligand coordinating the copper(II) ion via the imino nitrogen atom whereas in the dimeric [Cu(6mptsc)(sac)](2) complex, the sac anion behaves as a bridging bidentate ligand providing the imino nitrogen donor atom to one of the copper(II) ions and the carbonyl oxygen as a weakly coordinated axial ligand atom to the other Cu(II) ion. In both complexes, the copper(II) ions have distorted square-pyramidal environments. The distortion from an ideal square-pyramidal geometry is attributed to the restricted bite angles of the planar tridentate ligand. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of cis and trans tetradentate copper macrocyclic complexes, of ring size fourteen - sixteen, which employ amine and thioether donor groups are reported. Apart from 5,6,15,16-bisbenzo-8,13-diaza-1,4-dithia-cyclohexadecane copper(I) (cis-[Cu(H4NbuSen)]+) all of the complexes are obtained in the copper(II) form. Crystallographic analysis shows that the copper(II) complexes all adopt a distorted planar geometry around the copper. In contrast, cis-[Cu(H4NbuSen)]+ is found to adopt a distorted tetrahedral geometry. The complexes were subjected to electrochemical analysis in water and acetonitrile. The effect of the solvent, positions of the donor atoms (cis/trans) on E1/2 is discussed as is the comparison of the electrochemical behaviour of these complexes with their parent Schiff base macrocycles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper(II) acetylacetonate was anchored onto a hexagonal mesoporous silica (HMS) material using a two-step procedure: (i) functionalisation of the surface hydroxy groups with (3-aminopropyl)triethoxysilane (AMPTSi) and then (ii) anchoring of the copper(II) complex through Schiff condensation with free amine groups, using two different metal complex loadings. Upon the first step, nitrogen elemental analysis, XPS and DRIFT showed the presence of amine groups on the surface of the HMS material, and porosimetry indicated that the structure of the mesoporous material remained unchanged, although a slight decrease in surface area was observed. Atomic absorption, XPS and DRIFT showed that copper(II) acetylacetonate was anchored onto the amine-functionalised HMS by Schiff condensation between the free amine groups and the carbonyl groups of the copper(II) complex; using EPR an NO3 coordination sphere was proposed for the anchored copper(II) complex. The new [Cu(acac)2]-AMPTSi/HMS materials were tested in the aziridination of styrene at room temperature, using PhI=NTs as nitrogen source and acetonitrile as solvent. The styrene conversion and total TON of the heterogeneous phase reaction are higher than those of the same reaction catalysed in homogeneous phase by [Cu(acac)2]; nevertheless, the initial activity decreases and the reaction time increases due to substrate and product diffusion limitations. The heterogeneous catalyst showed a successive slight decrease in catalytic activity when reused for two more times. © Wiley-VCH Verlag GmbH & Co. KGaA, 2006.