915 resultados para bleaching of TiO2
Resumo:
We have investigated the adsorption and thermal decomposition of copper hexafluoroacetylacetonate (Cu-11(hfaC)(2)) on single crystal rutile TiO2(110). Low energy electron diffraction shows that room temperature saturation coverage of the Cu-II(hfac)(2) adsorbate forms an ordered (2 x 1) over-layer. X-ray and ultra-violet photoemission spectroscopy of the saturated surface were recorded as the sample was annealed in a sequential manner to reveal decomposition pathways. The results show that the molecule dissociatively adsorbs by detachment of one of the two ligands to form hfac and Cu-1(hfac) which chemisorb to the substrate at 298 K. These ligands only begin to decompose once the surface temperature exceeds 473 K where Cu core level shifts indicate metallisation. This reduction from Cu(I) to Cu(0) takes place in the absence of an external reducing agent and without disproportionation and is accompanied by the onset of decomposition of the hfac ligands. Finally, C K-edge near edge X-ray absorption fine structure experiments indicate that both the ligands adsorb aligned in the < 001 > direction and we propose a model in which the hfac ligands adsorb on the 5-fold coordinated Ti atoms and the Cu-1(hfac) moiety attaches to the bridging O atoms in a square planar geometry. The calculated tilt angle for these combined geometries is approximately 10 degrees to the surface normal.
Resumo:
Model catalysts of Pd nanoparticles and films on TiO2 (I 10) were fabricated by metal vapour deposition (MVD). Molecular beam measurements show that the particles are active for CO adsorption, with a global sticking probability of 0.25, but that they are deactivated by annealing above 600 K, an effect indicative of SMSI. The Pd nanoparticles are single crystals oriented with their (I 11) plane parallel to the surface plane of the titania. Analysis of the surface by atomic resolution STM shows that new structures have formed at the surface of the Pd nanoparticles and films after annealing above 800 K. There are only two structures, a zigzag arrangement and a much more complex "pinwheel" structure. The former has a unit cell containing 7 atoms, and the latter is a bigger unit cell containing 25 atoms. These new structures are due to an overlayer of titania that has appeared on the surface of the Pd nanoparticles after annealing, and it is proposed that the surface layer that causes the SMSI effect is a mixed alloy of Pd and Ti, with only two discrete ratios of atoms: Pd/Ti of 1: 1 (pinwheel) and 1:2 (zigzag). We propose that it is these structures that cause the SMSI effect. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
A number of Au/TiO2 catalysts have been prepared by a variety of methods in order to assess the affect of catalysts preparation methods on performance, catalyst contamination and the interplay between them. Their activity was studied in a pulse flow microreactor and it was found that preparation methods designed to eliminate impurities lead to more active samples. The effect of chlorine is often cited to be detrimental in the literature, but we have quantified it using XPS. It was found that the activity decreased in a nearly linear fashion with an increasing amount of this element at the surface. It is generally considered that catalysts prepared by the incipient wetness (IW) technique are ineffective for CO oxidation, but we show here that, by appropriate preparation methods, high activity IW catalysts can be made.
Resumo:
Bleaching spectra of the ‘fast’ and ‘medium’ optically stimulated luminescence (OSL) components of quartz are reported. A dependence of photoionization cross-section, σ, on wavelength was observed for the fast and medium components and a significant difference in their responses to stimulation wavelength was found. The ratio of the fast and medium photoionization cross-sections, σfast/σmedium, varied from 30.6 when stimulated with View the MathML source light to 1.4 at View the MathML source. At View the MathML source the fast and medium photoionization cross-sections were found to be sufficiently different that infrared bleaching at raised temperatures allowed the selective removal of the fast component with negligible depletion of the medium. A method for optically separating the OSL components of quartz is suggested, based on the wavelength dependence of photoionization cross-sections.
Resumo:
Understanding the interaction of organic molecules with TiO2 surfaces is important for a wide range of technological applications. While density functional theory (DFT) calculations can provide valuable insight about these interactions, traditional DFT approaches with local exchange-correlation functionals suffer from a poor description of non-bonding van der Waals (vdW) interactions. We examine here the contribution of vdW forces to the interaction of small organic molecules (methane, methanol, formic acid and glycine) with the TiO2 (110) surface, based on DFT calculations with the optB88-vdW functional. The adsorption geometries and energies at different configurations were also obtained in the standard generalized gradient approximation (GGA-PBE) for comparison. We find that the optB88-vdW consistently gives shorter surface adsorbate-to-surface distances and slightly stronger interactions than PBE for the weak (physisorbed) modes of adsorption. In the case of strongly adsorbed (chemisorbed) molecules both functionals give similar results for the adsorption geometries, and also similar values of the relative energies between different chemisorption modes for each molecule. In particular both functionals predict that dissociative adsorption is more favourable than molecular adsorption for methanol, formic acid and glycine, in general agreement with experiment. The dissociation energies obtained from both functionals are also very similar, indicating that vdW interactions do not affect the thermodynamics of surface deprotonation. However, the optB88-vdW always predicts stronger adsorption than PBE. The comparison of the methanol adsorption energies with values obtained from a Redhead analysis of temperature programmed desorption data suggests that optB88-vdW significantly overestimates the adsorption strength, although we warn about the uncertainties involved in such comparisons.
Resumo:
The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitised solar cells (DSSC). Structural analysis reveals small domains of ordered (2 x 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two five-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC.
Resumo:
The aim of this study was to evaluate in vitro the effect of different in-office bleaching systems on the surface morphology of bovine dentin. Thirty tooth fragments measuring 4 x 4mm, containing enamel and dentin, were obtained from the crowns of extracted bovine incisors. Samples were subjected to simulated intracoronal bleaching techniques using conventional (Opalescence Endo (R) and Whiteness Super Endo (R)) and light-activated systems (Opalescence Xtra (R) and Whiteness HP Maxx (R)). Controls were treated with either sodium perborate mixed with 10% hydrogen peroxide or no bleaching agent. The samples were observed under SEM and the recorded images were evaluated for topographic alterations. The ultrastructural alterations of dentin observed in this study varied greatly between groups according to the products used. Higher pH products (Whiteness HP Maxx (R) and Opalescence Xtra (R)) associated with in-office techniques yielded better maintenance of dentin ultrastructure. Apparently, both low pH and hydrogen peroxide oxidation play a role in altering the ultrastructure of dentin during internal dental bleaching. The use of alkaline products with reduced time of application (in-office techniques) may decrease such morphological alterations.
Resumo:
Objective. The aim was to evaluate the bleaching efficacy of sodium perborate/37% carbamide peroxide paste and traditional sodium perborate/distilled water for intracoronal bleaching. Study design. Thirty patients with dark anterior teeth were divided into 2 groups (n = 15): group A: sodium perborate/ distilled water; and group B: sodium perborate/37% carbamide peroxide paste. The bleaching treatment limited each patient to the maximum of 4 changes of the bleaching agent. Initial and final color shades were measured using the Vita Lumin shade guide. Results. Data was analyzed with Wilcoxon test for initial and final comparison according to the bleaching agent, demonstrating efficacy of the bleaching treatment with both agents. Mann-Whitney test was used for comparison of the efficacy of the bleaching agents, showing that there was no significant difference between them. Conclusion. The sodium perborate/37% carbamide peroxide association for intracoronal bleaching has proven to be as effective as sodium perborate/distilled water. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107: e43-e47)
Resumo:
The purpose of this in vitro study was to test a new methodology to evaluate the effects of 35% hydrogen peroxide agent on the microtopography of sound enamel using an atomic force microscope (AFM). The buccal sound surfaces of three extracted human lower incisors were used, without polishing the surfaces to maintain them with natural morphology. These unpolished surfaces were subjected to bleaching procedure with 35% hydrogen peroxide that consisted of 4 applications of the bleaching agent on enamel surfaces for 10 min each application. Surface images were obtained in a 15 mu m x 15 mu m area using an AFM. The roughness (Ra and RMS) and the power spectral density (PSD) were obtained before and after the bleaching treatment. As results we could inquire that the PSD analyses were very suitable to identifying the morphological changes on the surfaces, while the Ra and RMS parameters were insufficient to represent the morphological alterations promoted by bleaching procedure on enamel. The morphological wavelength in the range of visible light spectrum(380-750 nm) was analyzed, showing a considerable increase of the PSD with the bleaching treatment. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
TiO2 thin films, employed in dye-sensitized solar cells, were prepared by the sol-gel method or directly by Degussa P25 oxide and their surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The effect of adsorption of the cis-[Ru(dcbH(2))(2)(NCS)(2)] dye, N3, on the surface of films was investigated. From XPS spectra taken before and after argon-ion sputtering procedure, the surface composition of inner and outer layers of sensitized films was obtained and a preferential etching of Ru peak in relation to the Ti and N ones was identified. The photoelectrochemical parameters were also evaluated and rationalized in terms of the morphological characteristics of the films. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work assesses the photocatalytic (TiO2/UV) degradation of a simulated acid dye bath (Yellow 3, Red 51, Blue 74, and auxiliary chemicals). Color and phytotoxicity removal were monitored by spectrophotometry and lettuce (Lactuca sativa) seeds as the test organism, respectively. Mineralization was determined by DOC analyses. Photocatalytic, photolytic, and adsorption experiments were performed, showing that adsorption was negligible. After 240 minutes of irradiation, it was achieved 96% and 78% of color removal with photocatalysis and photolysis, respectively. 37% of mineralization occurred with photocatalysis only. The dye bath was rendered completely non-toxic after 60 minutes of photocatalytic treatment; the same result was only achieved with photolysis after 90 minutes. A kinetic model composed of two first-order in series reactions was used. The first photocatalytic decolorization rate constant was k(1) = 0.062 min(-1) and the second k(2) = 0.0043 min(-1), approximately two times greater than the photolytic ones.
Resumo:
The degradation of phenol by a hybrid process (activated sludge + photocatalysis) in a high salinity medium (50 g L-1 of chloride) has been investigated. The sludge used from a municipal wastewater facility was adapted to the high salt concentrations prior to use. The photocatalytic conditions were optimized by means of a factorial experimental design. TiO2 P25 from Degussa was used as the photocatalyst. The initial phenol concentration was approximately 200 mg L-1 and complete removal of phenol and a mineralization degree above 98% were achieved within 25 h of treatment (24 h of biological treatment and I h of photocatalysis). From HPLC analyses, five hydroxylated intermediates formed during oxidation have been identified. The main ones were catechol and hydroquinone, followed by 1,2,4-benzenetriol, 2-hydroxy- 1,4-benzoquinone, and pyrogallol, in this order. No formation of organochlorine compounds was observed. Therefore, the proposed hybrid process showed itself to be suited to treat phenol in the presence of high contents of salt. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The determination of minoxidil (MX) with potassium permanganate as a carrier in a flow injection method is described. The detection at 550nm was linear from 1.0x10-5 to 5.0x10-4mol L-1. The limit of detection (3 sigma/slope) was 8.92x10-6mol L-1, with an analytical frequency of 32h-1. The proposed method was applied to commercial samples, with recoveries from 104.7 to 106.4%. Comparison with the HPLC procedure reveled relative errors from 0.48 to 1.4%, and the results agreed within a 95% confidence level.
Resumo:
A theoretical investigation has been carried out to characterize bulk and selected surfaces of anatase TiO2. The calculations are performed using a B3LYP hybrid functional and 6-31G basis set within the periodic density functional approximation. Optimization procedures have been employed to determine the equilibrium geometry of the crystal and slab surface models. The compressibility, band structure, and the bulk and surface charge distributions are reported. The surface relative energies are identified to follow the sequence: (001) < (101) < (100) much less than (110) < < < (111), from the most stable surface to the least stable one. Relaxation of (001) and (101) surfaces are moderate, with no displacements exceeding; approximate to0.19 Angstrom. The theoretical results are compared with previous theoretical studies and available experimental data. (C) 2001 Elsevier B.V. B.V. All rights reserved.