978 resultados para benz[a]anthracene derivative
Resumo:
The thermal degradation of 2,6,2',6'-tetrabromo-4,4-pm-isoproylidene-di phenol (tetrabromobisphenol A) (TBBPA) has been investigated and a mechanism for its thermal degradation is suggested. TBBPA is a comonomer widely used in epoxy and in unsaturated polyester resins to impart fire retardance. These resins find a common use in electric and electronic equipment. The presence of bromine atoms is the key factor in fire retardant activity, while on the other hand it represents an ecological problem when pyrolytic recycling is programmed at the end of the useful life of such items. However, pyrolysis is the more advantageous recycling system for thermosetting resins and thus efforts should be made to control the pyrolysis in order to avoid or minimize the development of toxics. Homolytic scission of the aromatic bromine and condensation of aromatic bromine with phenolic hydroxyl are the main processes occuring in the range 270-340°C. A large amount of charred residue is left as a consequence of condensation reactions. HBr and brominated phenols and bisphenols are the main volatile products formed. Brominated dibenzodioxins structures are included in the charred residue and not evolved in the volatile phases.
Resumo:
Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.
Resumo:
We consider the existence and uniqueness problem for partial differential-functional equations of the first order with the initial condition for which the right-hand side depends on the derivative of unknown function with deviating argument.
Resumo:
The paper is devoted to the study of the Cauchy problem for a nonlinear differential equation of complex order with the Caputo fractional derivative. The equivalence of this problem and a nonlinear Volterra integral equation in the space of continuously differentiable functions is established. On the basis of this result, the existence and uniqueness of the solution of the considered Cauchy problem is proved. The approximate-iterative method by Dzjadyk is used to obtain the approximate solution of this problem. Two numerical examples are given.
Resumo:
2000 Mathematics Subject Classification: 35A15, 44A15, 26A33
Resumo:
2000 Mathematics Subject Classification: 26A33, 33C60, 44A15, 35K55
Resumo:
Mathematics Subject Classification: 26A33, 34A37.
Resumo:
2000 Math. Subject Classification: 26A33; 33E12, 33E30, 44A15, 45J05
Resumo:
Mathematics Subject Classification: 33D60, 33E12, 26A33
Resumo:
AMS Subj. Classification: MSC2010: 11F72, 11M36, 58J37
Resumo:
A multiscale Molecular Dynamics/Hydrodynamics implementation of the 2D Mercedes Benz (MB or BN2D) [1] water model is developed and investigated. The concept and the governing equations of multiscale coupling together with the results of the two-way coupling implementation are reported. The sensitivity of the multiscale model for obtaining macroscopic and microscopic parameters of the system, such as macroscopic density and velocity fluctuations, radial distribution and velocity autocorrelation functions of MB particles, is evaluated. Critical issues for extending the current model to large systems are discussed.
Resumo:
Mathematics Subject Classification 2010: 35M10, 35R11, 26A33, 33C05, 33E12, 33C20.
Resumo:
Exercises involving the calculation of the derivative of piecewise defined functions are common in calculus, with the aim of consolidating beginners’ knowledge of applying the definition of the derivative. In such exercises, the piecewise function is commonly made up of two smooth pieces joined together at one point. A strategy which avoids using the definition of the derivative is to find the derivative function of each smooth piece and check whether these functions agree at the chosen point. Showing that this strategy works together with investigating discontinuities of the derivative is usually beyond a calculus course. However, we shall show that elementary arguments can be used to clarify the calculation and behaviour of the derivative for piecewise functions.