967 resultados para androgen receptor gene
Resumo:
The klotho gene may be involved in the aging process. Klotho is a coactivator of FGF23, a regulator of phosphate and vitamin D metabolism. It has also been reported to be downregulated in insulin resistance syndromes and paradoxically to directly inhibit IGF-1 and insulin signaling. Our aim was to study klotho's regulation and effects on insulin and IGF-1 signaling to unravel this paradox. We studied klotho tissue distribution and expression by quantitative real-time polymerase chain reaction and Western blotting in obese Zucker rats and high-fat fed Wistar rats, two models of insulin resistance. Klotho was expressed in kidneys but at much lower levels (<1.5%) in liver, muscle, brain, and adipose tissue. There were no significant differences between insulin resistant and control animals. We next produced human recombinant soluble klotho protein (KLEC) and studied its effects on insulin and IGF-1 signaling in cultured cells. In HEK293 cells, FGF23 signaling (judged by FRS2-alpha and ERK1/2 phosphorylation) was activated by conditioned media from KLEC-producing cells (CM-KLEC); however, IGF-1 signaling was unaffected. CM-KLEC did not inhibit IGF-1 and insulin signaling in L6 and Hep G2 cells, as judged by Akt and ERK1/2 phosphorylation. We conclude that decreased klotho expression is not a general feature of rodent models of insulin resistance. Further, the soluble klotho protein does not inhibit IGF-1 and/or insulin signaling in HEK293, L6, and HepG2 cells, arguing against a direct role of klotho in insulin signaling. However, the hypothesis that klotho indirectly regulates insulin sensitivity via FGF23 activation remains to be investigated.
Resumo:
Prostate cancer is the most common carcinoma in the male population. In its initial stage, the disease is androgen-dependent and responds therapeutically to androgen deprivation treatment but it usually progresses after a few years to an androgen-independent phase that is refractory to hormonal manipulations. The proteasome is a multi-unit protease system that regulates the abundance and function of a significant number of cell proteins, and its inhibition results in cancer cell growth inhibition and apoptosis and is already exploited in the clinic with the use of proteasome inhibitor bortezomib in multiple myeloma. In order to be recognized by the proteasome, a target protein needs to be linked to a chain of the small protein ubiquitin. In this paper, we review the role of ubiquitin-proteasome system (UPS) in androgen receptor-dependent transcription as well as in the castration resistant stage of the disease, and we discuss therapeutic opportunities that UPS inhibition offers in prostate cancer.
Biased V beta usage in immature thymocytes is independent of DJ beta proximity and pT alpha pairing.
Resumo:
During thymus development, the TCR beta locus rearranges before the TCR alpha locus. Pairing of productively rearranged TCR beta-chains with an invariant pT alpha chain leads to the formation of a pre-TCR and subsequent expansion of immature pre-T cells. Essentially nothing is known about the TCR V beta repertoire in pre-T cells before or after the expression of a pre-TCR. Using intracellular staining, we show here that the TCR V beta repertoire is significantly biased at the earliest developmental stage in which VDJ beta rearrangement has occurred. Moreover (and in contrast to the V(H) repertoire in immature B cells), V beta repertoire biases in immature T cells do not reflect proximity of V beta gene segments to the DJ beta cluster, nor do they depend upon preferential V beta pairing with the pT alpha chain. We conclude that V gene repertoires in developing T and B cells are controlled by partially distinct mechanisms.
Resumo:
Dans ce travail de thèse, nous avons étudié les mécanismes d'action de deux médicaments connus pour diminuer la prise alimentaire et pondérale : la metformine et le telmisartan. Nous avons dans un premier temps étudié les effets de la metformine, un antidiabétique oral connu pour avoir des effets anorexigènes. Les mécanismes hypothalamiques potentiellement impliqués dans la modulation de la prise alimentaire par la metformine ont été étudiés dans trois groupes de rats : un groupe de rats obèses (DIO), un groupe de rats résistants à l'obésité (DR) ainsi qu'un groupe contrôle. A la fin de la période de prise pondérale de six mois, les rats DIO avaient des taux d'ARNm de NPY hypothalamique plus élevés que leurs congénères résistants et contrôles. Chez les DIO ainsi que chez les DR un traitement par metformine induit une baisse significative de la prise alimentaire accompagnée par une baisse du poids. Nous avons pu d'autre part constater que la perte de poids obtenue par un traitement de metformine était corrélée aux taux circulants de leptine avant le traitement. Cet effet s'accompagne d'une augmentation de l'expression du récepteur ObRb au niveau hypothalamique. Dans un second temps, nous avons étudié les effets du telmisartan, un inhibiteur du récepteur à l'angiotensine II ayant une activité agoniste partielle PPARγ. L'influence du telmisartan associé à la pioglitazone sur la prise alimentaire et pondérale a été examinée en étudiant leur effet sur les neuropeptides hypothalamiques responsables du contrôle de la prise alimentaire. Quatre groupes de souris soumises à un régime riche en graisse ont été formés : un groupe placebo, un groupe pioglitazone, un groupe telmisartan et un groupe pioglitazone-telmisartan. Le telmisartan a aboli la prise pondérale induite par une diète riche en graisse ou par un traitement de pioglitazone. Cette diminution était corrélée à une baisse de la prise alimentaire et de l'expression hypothalamique d'AgRP. Cette étude confirme donc les effets anorexigènes du telmisartan et démontre pour la première fois le rôle fonctionnel du telmisartan sur l'expression hypothalamique d'AgRP. English Abstract : In this work, we investigated the effect of two drugs known to have interessants effects on food intake and body weight. First we investigated the hypothalamic mechanisms potentially implicated in the modulation of feeding by the glucose-lowering drug metformin in three different groups of animals: diet-induced obese (DIO) and diet-resistant (DR) male rats as well as lean controls (CT). At the end of the high fat diet period, despite higher leptin levels, DIO rats had higher levels of hypothalamic NPY expression than DR or CT, suggesting a central leptin resistance. In DIO but also in DR rats, metformin treatment induced significant reductions of food intake accompanied by decreases in body weight. Interestingly, the weight loss achieved by metformin was correlated with pre-treatment plasma leptin levels. This effect was paralleled by a stimulation of the expression of the leptin receptor gene (ObRb) in the arcuate nucleus. Next we investigated the antihypertensive drug Telmisartan, an angiotensin II receptor blocker with PPARγ agonistic properties. The influence of telmisartan, of pioglitazone and of their association on weight gain and food intake was assessed by studying their effects on neuro-endocrine mediators involved in food intake. Mice were fed a high fat diet, weightmatched and randomized in four treatment groups: vehicle, pioglitazone, telmisartan and pioglitazone-telmisartan. Telmisartan treatment was found to abolish weight and fat gain in either vehicle or pioglitazone treated mice. This effect was accompanied by a decrease in food intake. The hypothalamic expression of the agouti-related protein and plasma leptin levels show also a decrease under metformin treatment. This study confirms the anorexigenic effects of telmisartan in mice fed a high fat diet, and suggests for the first time a functional role of telmisartan on hypothalamic orexigenic agouti-related protein regulation.
Resumo:
Individuals need to adapt to their local environment in order to survive. When selection pressures differ in local populations, polymorphism can evolve. Colour polymorphism is one of the most obvious polymorphisms since it is readily observable. Different sources of colouration exist, but melanin-based colouration is one of the most common in birds. The melanocortin system produces this colouration and because the melanocortin system has pleiotropic effects on behavioural and physiological traits, it is a good candidate to be an underlying mechanism to explain the maintenance of colour polymorphism. In this thesis I studied three different raptors which all display melanin-based colouration; barn owls (Tyto alba), tawny owls (Strix aluco) and Eurasian kestrels (Falco tinnunculus). The main question was if there was a relationship between melanin-based colouration and individual behavioural differences. The underlying hypothesis is that colour could be a signal of certain adaptive traits. Our goal was to find evolutionary explanations for the persistence of colour polymorphism. I found that nestling kestrels and barn owls differ in anti-predatory behaviour, with respect to their melanic colouration (chapters 1 and 2). Darker individuals show less reaction to human handling, but in kestrels aggression and colouration are related in opposite ways than in barn owls. More reddish barn owls travel greater distances in natal dispersal and this behaviour is repeatable between parents and same sex offspring (chapter 3). Dark reddish tawny owls defend their nests more intensely against intruders and appear to suffer less from nest predation (chapter 4). Finally I show that polymorphism in the Melanocortin 1 receptor gene (MC1R), which is strongly correlated with reddish colouration in the barn owl, is related to natal dispersal distance, providing a first indication for a genetic basis of the relation between this behaviour and colouration (chapter 5). My results demonstrate a clear link between melanin-based colouration and animal personality traits. I demonstrated this relation in three different species, which shows there is most likely a general underlying mechanism responsible. Different predation pressures might have shaped the reactions to predation, but also differences in sex-related colouration. Male-like and female-like colouration might signal more or less aggressive behaviour. Fluctuating environmental conditions might cause different individual strategies to produce equal reproductive success. The melanocortin system with its pleiotropic effects might be an underlying mechanism, as suggested by the results from the genetic polymorphism, the similar results found in these three species and by the similar relations reported in other species. This thesis demonstrates that colouration and individual differences are correlated and it provides the first glimpse of an underlying system. We can now conduct a more directed search for underlying mechanisms and evolutionary explanations with the use of quantitative genetic methods.
Resumo:
Alterations in motor functions are well-characterized features observed in humans and experimental animals subjected to thyroid hormone dysfunctions during development. Here we show that congenitally hypothyroid rats display hyperactivity in the adult life. This phenotype was associated with a decreased content of cannabinoid receptor type 1 (CB(1)) mRNA in the striatum and a reduction in the number of binding sites in both striatum and projection areas. These findings suggest that hyperactivity may be the consequence of a thyroid hormone deficiency-induced removal of the endocannabinoid tone, normally acting as a brake for hyperactivity at the basal ganglia. In agreement with the decrease in CB(1) receptor gene expression, a lower cannabinoid response, measured by biochemical, genetic and behavioral parameters, was observed in the hypothyroid animals. Finally, both CB(1) receptor gene expression and the biochemical and behavioral dysfunctions found in the hypothyroid animals were improved after a thyroid hormone replacement treatment. Thus, the present study suggests that impairment in the endocannabinoid system can underlay the hyperactive phenotype associated with hypothyroidism.
Resumo:
SUMMARY: Iron is an essential element for nearly all organisms but it is poorly available in most environments and not sufficient to support microbial growth. Bacteria have evolved a range of strategies to acquire this important metal, the most common of these being siderophore-mediated iron uptake. Siderophores are high-affinity iron chelators which are released to the extracellular environment where they complex iron and deliver it to the bacterial cell, via specific uptake systems. The Gram-negative bacterium Pseudomonas aeruginosa produces two siderophores, pyoverdine and pyochelin, which both contribute to the virulence of this opportunistic human pathogen. The genes responsible for pyochelin-mediated iron uptake are grouped in the P. aeruginosa chromosome. The pyochelin biosynthetic genes are organized in two divergent operons, pchDCBA and pchEFGHI, which flank the regulatory gene pchR. The fptA gene, encoding the ferric pyochelin outer membrane receptor, occurs immediately downstream of the pchEFGHI genes. The biosynthesis of the siderophore and its receptor is subjected to dual regulation enabling P. aeruginosa to respond not only to the intracellular iron level but also to the presence of the siderophore in the extracellular environment. Negative regulation is mediated by the widespread Fur protein which employs ferrous iron as a corepressor and binds to a consensus sequence in the promoter region of iron-regulated genes. Positive regulation occurs during iron starvation and requires the AraC-type transcriptional regulator PchR. This regulator, together with pyochelin, induces the expression of pyochelin biosynthesis and uptake genes via a mechanism which was partly unraveled during this thesis. A 32-bp conserved sequence element (PchR-box) was identified in promoter regions of pyochelin-controlled genes. The PchR-box in the pchR-pchDCBA intergenic region was found to be essential for the induction of the pchDCBA operon and for the repression of the divergently transcribed pchR gene. PchR was purified as a fusion with maltose-binding protein (MBP). Mobility shift assays demonstrated specific binding of MBP-PchR to the PchR-box in the presence, but not in the absence of pyochelin. PchR-box mutations which interfered with pyochelin-dependent regulation in vivo, also affected pyochelin-dependent PchR-box recognition in vitro. These results show that pyochelin is the intracellular effector required for PchR-mediated regulation. The fact that extracellular pyochelin triggers this regulation implies that the siderophore can enter the cytoplasm. This conclusion was corroborated by analysing the importance of known and putative pyochelin uptake genes for pyochelin-dependent gene regulation. The pyochelin receptor gene fptA is followed by three genes, fptB, fptC, and fptX, which were shown here to be co-transcribed with fPtA. While fPtX encodes an inner membrane pen-I-lease, the functions of FptB and FptC are currently unknown. FptA and FptX, which are both required for pyochelin-mediated iron uptake, were found to be also needed for pyochelin-dependent gene regulation. FptB and FptC however, were not required and their role, if any, in the uptake of the PchR effector pyochelin remains elusive. RESUME Le fer est un élément essentiel pour la quasi-totalité des organismes, mais dans la plupart des environnements, il est difficilement accessible et insuffisant à la croissance microbienne. Les bactéries ont développé de multiples stratégies pour acquérir ce précieux métal, la plus commune étant l'acquisition au moyen de sidérophores. Les sidérophores sont des petites molécules dotées d'une forte affinité pour le fer qui, une fois relâchées dans l'environnement extracellulaire, vont complexer le fer et le délivrer à la cellule bactérienne par l'intermédiaire de systèmes d'acquisition spécifiques. La bactérie Gram-négative Pseudomonas aeruginosa produit deux sidérophores, la pyoverdine et la pyochéline, qui contribuent également à la virulence de ce pathogène opportuniste. Les gènes impliqués dans l'acquisition du fer à l'aide de la pyochéline sont regroupés sur t. le chromosome de P. aeruginosa. Les gènes de biosynthèse de la pyochéline sont organisés en deux opérons divergents, pchDCBA et pchEFGHI, qui flanquent le gène régulateur pchR. Le gène fptA, codant pour le récepteur de la pyochéline dans la membrane externe, est situé immédiatement en aval des gènes pchEFGHL La biosynthèse du sidérophore et de son récepteur est soumise à une double régulation permettant à P. aeruginosa de réagir non seulement à la quantité de fer intracellulaire, mais également à la présence du sidérophore dans le milieu extracellulaire. La répression se fait par l'intermédiaire de la protéine Fur, qui nécessite le fer ferreux comme co-répresseur et se lie à une séquence consensus dans la région promotrice des gènes régulés par le fer. L'induction se produit lorsque le fer est limitant, et requiert PchR, un régulateur transcriptionnel de la famille AraC. En présence de pyochéline, ce régulateur induit l'expression des gènes de biosynthèse et du récepteur de la pyochéline par l'intermédiaire d'un mécanisme partiellement résolu dans ce travail. Une séquence conservée (PchR-box) a été identifiée dans la région promotrice des gènes régulés par la pyochéline. La PchR-box située dans la région intergénique pchR-pchDCBA s'est révélée être importante pour l'induction de l'opéron pchDCBA et la répression du gène divergent pchR. PchR a été purifiée en tant que protéine de fusion avec une protéine liant le maltose (MBP). Des expériences de gel retard ont démontré la liaison spécifique de la protéine MBP-PchR sur la PchR-box en présence, mais non en absence de pyochéline. Les mutations de la PchR-box qui ont affecté la régulation pyochéline-dépendante in vivo, ont également eu un effet sur la liaison de la protéine in vitro. Ces résultats démontrent que la pyochéline est l'effecteur intracellulaire nécessaire à la régulation par PchR. Le fait que la pyochéline extracellulaire soit capable d'activer cette régulation implique que le sidérophore entre dans le cytoplasme. Cette conclusion a été corroborée par l'évaluation du rôle des gènes connus ou putatifs de l'incorporation du fer via la pyochéline sur la régulation pyochéline-dépendente. Le gène fPtA, codant pour le récepteur de la pyochéline, est suivi de trois gènes, fptB,fptC, et fptX, co-transcrits avec,ffitA. Si sffitX code pour une perméase de la membrane interne, la fonction de FptB et FptC reste obscure. FptA et FptX, nécessaires à l'acquisition du fer par l'intermédiaire de la pyochéline, se sont également révélés être requis pour la régulation pyochéline-dépendante des gènes pchDCBA, pchEFGHI et fptABCX. FptB et FptC n'ont quant à eux vraisemblablement pas de rôle majeur à jouer, si ce n'est aucun, dans l'incorporation de la pyochéline.
Resumo:
BACKGROUND: Structural mutations (SMs) play a major role in cancer development. In some cancers, such as breast and ovarian, DNA double-strand breaks (DSBs) occur more frequently in transcribed regions, while in other cancer types such as prostate, there is a consistent depletion of breakpoints in transcribed regions. Despite such regularity, little is understood about the mechanisms driving these effects. A few works have suggested that protein binding may be relevant, e.g. in studies of androgen receptor binding and active chromatin in specific cell types. We hypothesized that this behavior might be general, i.e. that correlation between protein-DNA binding (and open chromatin) and breakpoint locations is common across divergent cancers. RESULTS: We investigated this hypothesis by comprehensively analyzing the relationship among 457 ENCODE protein binding ChIP-seq experiments, 125 DnaseI and 24 FAIRE experiments, and 14,600 SMs from 8 diverse cancer datasets covering 147 samples. In most cancers, including breast and ovarian, we found enrichment of protein binding and open chromatin in the vicinity of SM breakpoints at distances up to 200 kb. Furthermore, for all cancer types we observed an enhanced enrichment in regions distant from genes when compared to regions proximal to genes, suggesting that the SM-induction mechanism is independent from the bias of DSBs to occur near transcribed regions. We also observed a stronger effect for sites with more than one protein bound. CONCLUSIONS: Protein binding and open chromatin state are associated with nearby SM breakpoints in many cancer datasets. These observations suggest a consistent mechanism underlying SM locations across different cancers.
Resumo:
Polychlorinated biphenyls (PCBs) are a group of halogenated aromatic hydrocarbons, synthetic chemicals which do not occur naturally in the environment. PCBs are considered potential endocrine disruptors. They are estrogen-like and anti-androgenic chemicals in the environment contain potentially hazardous effects on male reproductive axis resulting in infertility and other hormonal dependent reproductive functions. These toxic substance cause alteration of the endocrine systems, mimic natural hormones and inhibit the action of hormones. The aim of this study is to examine the effect of Polychlorinated biphenyls (PCBs) on testicular development of male reproductive system in mice. The male mice were randomly assigned to five groups with each group comprising twenty-one members. In those mice were administered 0 μg/kg (control group) and 0.5, 5, 50, 500 μg/kg Aroclor 1254 (treated group) by gavages three time per week. Treatment was carried out for 50 days after which the mouse was sacrificed and the body weight, testicular weight; epedidymis weight, sperm mortality, sperm count and sperm abnormality were taken. However, there was no significant difference in testicular/body weight and epididymis/body weight ratio in treated group compared with the control group. According to the analysis of sperm quality, Aroclor 1254 treated group demonstrated significant increased in sperm mortality in 500 μg/kg; decreased the sperm count in 0.5 μg/kg, 5 μg/kg, 50 μg/kg and 500 μg/kg; and significantly elevate the sperm abnormality in 50 μg/kg and 500 μg/kg compared to the control in a dose-dependent manner. The sex hormone levels in the testes were detected by radio-immunoassay (RIA) method. The levels of testosterone and 17β-estradiol did not reveal significant alteration (p< 0.05) in PCBs treated groups compared to the control in a dose-dependent manner. The testis were obtained and subjected to routine histopathology following exposure to PCBs in supplement diet. The diameter of the seminiferous tubule and the number of Sertoli cells in the treated group increased significantly (p< 0.05) in comparison to the control group. For the spermatogenic cell, the number of germ cell in high concentration decreased significantly (p< 0.05). However, spermatogonia cells in PCB treated group showed non-significant difference (p< 0.05) compared to the control. vii Western blot analysis was used to determine the level of protein between the control and treated group. The level of Proliferating cell nuclear antigen (PCNA) was determined and the results have shown no significant alteration between the treated groups and the control. the level of sex hormone receptor (ER α/β); Androgen receptor (AR) were identified in the testes to detect the proliferative effect induced by PCBs. Statistical analyses of AR, ER α and ER β did not reveal significant difference between the control and the treated groups. In the present study, we continue to investigate adverse effect of Aroclor 1254 and their mechanism on spermatogenesis. The result of Sperm quality and histopathology showed that Aroclor 1254 at low concentration induce inhibitory effect on testicular function of male mouse.
Resumo:
Wave-shaped ribs were detected at prenatal ultrasound in a 20(+1) week female fetus. At birth, skeletal radiographs showed marked hypomineralization and suggested hypophosphatasia. However, elevated blood calcium and alkaline phosphatase excluded hypophosphatasia and raised the possibility of Jansen metaphyseal dysplasia. Molecular analysis of the PTH/PTHrP receptor gene (PTH1R) showed heterozygosity for a previously undescribed transversion variant (c.1373T>A), which predicts p.Ile458Lys. In vitro evaluation of wild type and mutant PTH/PTHrP receptors supported the pathogenic role of the p.Ile458Lys substitution, and confirmed the diagnosis of Jansen metaphyseal dysplasia. This disorder may present prenatally with wavy ribs and in the newborn with hypomineralization, and may therefore be confused with hypophosphatasia. The mottled metaphyseal lesions typically associated with this disease appear only in childhood.
Resumo:
Superantigens (SAg) are proteins of bacterial or viral origin able to activate T cells by forming a trimolecular complex with both MHC class II molecules and the T cell receptor (TCR), leading to clonal deletion of reactive T cells in the thymus. SAg interact with the TCR through the beta chain variable region (Vbeta), but the TCR alpha chain has been shown to have an influence on the T cell reactivity. We have investigated here the role of the TCR alpha chain in the modulation of T cell reactivity to Mtv-7 SAg by comparing the peripheral usage of Valpha2 in Vbeta6(+) (SAg-reactive) and Vbeta8.2(+) (SAg non-reactive) T cells, in either BALB/D2 (Mtv-7(+)) or BALB/c (Mtv-7(-)) mice. The results show, first, that pairing of Vbeta6 with certain Valpha2 family members prevents T cell deletion by Mtv-7 SAg. Second, there is a strikingly different distribution of the Valpha2 family members in CD4 and CD8 populations of Vbeta6 but not of Vbeta8.2 T cells, irrespective of the presence of Mtv-7 SAg. Third, the alpha chain may play a role in the overall stability of the TCR/SAg/MHC complex. Taken together, these results suggest that the Valpha domain contributes to the selective process by its role in the TCR reactivity to SAg/MHC class II complexes, most likely by influencing the orientation of the Vbeta domain in the TCR alphabeta heterodimer.
Resumo:
Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is a progressive white matter disease with a wide range of clinical symptoms including dementia, behavioral changes, seizures, pyramidal signs, ataxia, and parkinsonism.(1-3) Affected individuals develop symptoms in their early 40s with an average survival time of 10 years. HDLS is inherited as an autosomal dominant trait. Recently, mutations in the colony-stimulating factor 1 receptor gene (CSF-1R) were identified as the genetic cause of HDLS.(4) White matter lesions, easily demonstrated on MRI studies, involve predominantly the frontal lobes and corpus callosum with subsequent cortical atrophy. MRI abnormalities are present prior to symptom onset.(5,6) Histopathology shows widespread myelin and axon destruction with axonal dilations termed spheroids, as well as pigmented macrophages.
Resumo:
We conducted a genome-wide association study for androgenic alopecia in 1,125 men and identified a newly associated locus at chromosome 20p11.22, confirmed in three independent cohorts (n = 1,650; OR = 1.60, P = 1.1 x 10(-14) for rs1160312). The one man in seven who harbors risk alleles at both 20p11.22 and AR (encoding the androgen receptor) has a sevenfold-increased odds of androgenic alopecia (OR = 7.12, P = 3.7 x 10(-15)).
Resumo:
Recently, pharmaceutical industry developed a new class of therapeutics called Selective Androgen Receptor Modulator (SARM) to substitute the synthetic anabolic drugs used in medical treatments. Since the beginning of the anti-doping testing in sports in the 1970s, steroids have been the most frequently detected drugs mainly used for their anabolic properties. The major advantage of SARMs is the reduced androgenic activities which are the main source of side effects following anabolic agents' administration. In 2010, the Swiss laboratory for doping analyses reported the first case of SARMs abuse during in-competition testing. The analytical steps leading to this finding are described in this paper. Screening and confirmation results were obtained based on liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses. Additional information regarding the SARM S-4 metabolism was investigated by ultra high-pressure liquid chromatography coupled to quadrupole time-of-flight mass spectrometer (UHPLC-QTOF-MS).
Resumo:
Background: Functional hypothalamic amenorrhea is a reversible form of gonadotropin-releasing hormone (GnRH) deficiency commonly triggered by stressors such as excessive exercise, nutritional deficits, or psychological distress. Women vary in their susceptibility to inhibition of the reproductive axis by such stressors, but it is unknown whether this variability reflects a genetic predisposition to hypothalamic amenorrhea. We hypothesized that mutations in genes involved in idiopathic hypogonadotropic hypogonadism, a congenital form of GnRH deficiency, are associated with hypothalamic amenorrhea. Methods: We analyzed the coding sequence of genes associated with idiopathic hypogonadotropic hypogonadism in 55 women with hypothalamic amenorrhea and performed in vitro studies of the identified mutations. Results: Six heterozygous mutations were identified in 7 of the 55 patients with hypothalamic amenorrhea: two variants in the fibroblast growth factor receptor 1 gene FGFR1 (G260E and R756H), two in the prokineticin receptor 2 gene PROKR2 (R85H and L173R), one in the GnRH receptor gene GNRHR (R262Q), and one in the Kallmann syndrome 1 sequence gene KAL1 (V371I). No mutations were found in a cohort of 422 controls with normal menstrual cycles. In vitro studies showed that FGFR1 G260E, FGFR1 R756H, and PROKR2 R85H are loss-of-function mutations, as has been previously shown for PROKR2 L173R and GNRHR R262Q. Conclusions: Rare variants in genes associated with idiopathic hypogonadotropic hypogonadism are found in women with hypothalamic amenorrhea, suggesting that these mutations may contribute to the variable susceptibility of women to the functional changes in GnRH secretion that characterize hypothalamic amenorrhea. Our observations provide evidence for the role of rare variants in common multifactorial disease. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others; ClinicalTrials.gov number, NCT00494169.)