875 resultados para alberi, decisione, apprendimento, ensemble, learning, machine
Resumo:
Data coming out from various researches carried out over the last years in Italy on the problem of school dispersion in secondary school show that difficulty in studying mathematics is one of the most frequent reasons of discomfort reported by students. Nevertheless, it is definitely unrealistic to think we can do without such knowledge in today society: mathematics is largely taught in secondary school and it is not confined within technical-scientific courses only. It is reasonable to say that, although students may choose academic courses that are, apparently, far away from mathematics, all students will have to come to terms, sooner or later in their life, with this subject. Among the reasons of discomfort given by the study of mathematics, some mention the very nature of this subject and in particular the complex symbolic language through which it is expressed. In fact, mathematics is a multimodal system composed by oral and written verbal texts, symbol expressions, such as formulae and equations, figures and graphs. For this, the study of mathematics represents a real challenge to those who suffer from dyslexia: this is a constitutional condition limiting people performances in relation to the activities of reading and writing and, in particular, to the study of mathematical contents. Here the difficulties in working with verbal and symbolic codes entail, in turn, difficulties in the comprehension of texts from which to deduce operations that, once combined together, would lead to the problem final solution. Information technologies may support this learning disorder effectively. However, these tools have some implementation limits, restricting their use in the study of scientific subjects. Vocal synthesis word processors are currently used to compensate difficulties in reading within the area of classical studies, but they are not used within the area of mathematics. This is because the vocal synthesis (or we should say the screen reader supporting it) is not able to interpret all that is not textual, such as symbols, images and graphs. The DISMATH software, which is the subject of this project, would allow dyslexic users to read technical-scientific documents with the help of a vocal synthesis, to understand the spatial structure of formulae and matrixes, to write documents with a technical-scientific content in a format that is compatible with main scientific editors. The system uses LaTex, a text mathematic language, as mediation system. It is set up as LaTex editor, whose graphic interface, in line with main commercial products, offers some additional specific functions with the capability to support the needs of users who are not able to manage verbal and symbolic codes on their own. LaTex is translated in real time into a standard symbolic language and it is read by vocal synthesis in natural language, in order to increase, through the bimodal representation, the ability to process information. The understanding of the mathematic formula through its reading is made possible by the deconstruction of the formula itself and its “tree” representation, so allowing to identify the logical elements composing it. Users, even without knowing LaTex language, are able to write whatever scientific document they need: in fact the symbolic elements are recalled by proper menus and automatically translated by the software managing the correct syntax. The final aim of the project, therefore, is to implement an editor enabling dyslexic people (but not only them) to manage mathematic formulae effectively, through the integration of different software tools, so allowing a better teacher/learner interaction too.
Resumo:
The aim of this thesis was to investigate the respective contribution of prior information and sensorimotor constraints to action understanding, and to estimate their consequences on the evolution of human social learning. Even though a huge amount of literature is dedicated to the study of action understanding and its role in social learning, these issues are still largely debated. Here, I critically describe two main perspectives. The first perspective interprets faithful social learning as an outcome of a fine-grained representation of others’ actions and intentions that requires sophisticated socio-cognitive skills. In contrast, the second perspective highlights the role of simpler decision heuristics, the recruitment of which is determined by individual and ecological constraints. The present thesis aims to show, through four experimental works, that these two contributions are not mutually exclusive. A first study investigates the role of the inferior frontal cortex (IFC), the anterior intraparietal area (AIP) and the primary somatosensory cortex (S1) in the recognition of other people’s actions, using a transcranial magnetic stimulation adaptation paradigm (TMSA). The second work studies whether, and how, higher-order and lower-order prior information (acquired from the probabilistic sampling of past events vs. derived from an estimation of biomechanical constraints of observed actions) interacts during the prediction of other people’s intentions. Using a single-pulse TMS procedure, the third study investigates whether the interaction between these two classes of priors modulates the motor system activity. The fourth study tests the extent to which behavioral and ecological constraints influence the emergence of faithful social learning strategies at a population level. The collected data contribute to elucidate how higher-order and lower-order prior expectations interact during action prediction, and clarify the neural mechanisms underlying such interaction. Finally, these works provide/open promising perspectives for a better understanding of social learning, with possible extensions to animal models.
Resumo:
Apprendere nelle organizzazioni, analisi della letteratura afferente con particolare attenzione al modello della "learning organization". Applicazioni e casi pratici per un raffronto con gli aspetti teorici precedentemente approfonditi e per l'individuazione dei trend attuali della gestione della conoscenza e dei processi di apprendimento all'interno delle organizzazioni con particolare attenzione al mondo del business internazionale.
Resumo:
La tesi affronta il tema dell'innovazione della scuola, oggetto di costante attenzione da parte delle organizzazioni internazionali e dei sistemi educativi nazionali, per le sue implicazioni economiche, sociali e politiche, e intende portare un contributo allo studio sistematico e analitico dei progetti e delle esperienze di innovazione complessiva dell'ambiente di apprendimento. Il concetto di ambiente di apprendimento viene approfondito nelle diverse prospettive di riferimento, con specifica attenzione al framework del progetto "Innovative Learning Environments" [ILE], dell’Organisation For Economic And Cultural Development [OECD] che, con una prospettiva dichiaratamente olistica, individua nel dispositivo dell’ambiente di apprendimento la chiave per l’innovazione dell’istruzione nella direzione delle competenze per il ventunesimo Secolo. I criteri presenti nel quadro di riferimento del progetto sono stati utilizzati per un’analisi dell’esperienza proposta come caso di studio, Scuola-Città Pestalozzi a Firenze, presa in esame perché nell’anno scolastico 2011/2012 ha messo in pratica appunto un “disegno” di trasformazione dell’ambiente di apprendimento e in particolare dei caratteri del tempo/scuola. La ricerca, condotta con una metodologia qualitativa, è stata orientata a far emergere le interpretazioni dei protagonisti dell’innovazione indagata: dall’analisi del progetto e di tutta la documentazione fornita dalla scuola è scaturita la traccia per un focus-group esplorativo attraverso il quale sono stati selezionati i temi per le interviste semistrutturate rivolte ai docenti (scuola primaria e scuola secondaria di primo grado). Per quanto concerne l’interpretazione dei risultati, le trascrizioni delle interviste sono state analizzate con un approccio fenomenografico, attraverso l’individuazione di unità testuali logicamente connesse a categorie concettuali pertinenti. L’analisi dei materiali empirici ha permesso di enucleare categorie interpretative rispetto alla natura e agli scopi delle esperienze di insegnamento/apprendimento, al processo organizzativo, alla sostenibilità. Tra le implicazioni della ricerca si ritengono particolarmente rilevanti quelle relative alla funzione docente.
Resumo:
Il tumore al seno si colloca al primo posto per livello di mortalità tra le patologie tumorali che colpiscono la popolazione femminile mondiale. Diversi studi clinici hanno dimostrato come la diagnosi da parte del radiologo possa essere aiutata e migliorata dai sistemi di Computer Aided Detection (CAD). A causa della grande variabilità di forma e dimensioni delle masse tumorali e della somiglianza di queste con i tessuti che le ospitano, la loro ricerca automatizzata è un problema estremamente complicato. Un sistema di CAD è generalmente composto da due livelli di classificazione: la detection, responsabile dell’individuazione delle regioni sospette presenti sul mammogramma (ROI) e quindi dell’eliminazione preventiva delle zone non a rischio; la classificazione vera e propria (classification) delle ROI in masse e tessuto sano. Lo scopo principale di questa tesi è lo studio di nuove metodologie di detection che possano migliorare le prestazioni ottenute con le tecniche tradizionali. Si considera la detection come un problema di apprendimento supervisionato e lo si affronta mediante le Convolutional Neural Networks (CNN), un algoritmo appartenente al deep learning, nuova branca del machine learning. Le CNN si ispirano alle scoperte di Hubel e Wiesel riguardanti due tipi base di cellule identificate nella corteccia visiva dei gatti: le cellule semplici (S), che rispondono a stimoli simili ai bordi, e le cellule complesse (C) che sono localmente invarianti all’esatta posizione dello stimolo. In analogia con la corteccia visiva, le CNN utilizzano un’architettura profonda caratterizzata da strati che eseguono sulle immagini, alternativamente, operazioni di convoluzione e subsampling. Le CNN, che hanno un input bidimensionale, vengono solitamente usate per problemi di classificazione e riconoscimento automatico di immagini quali oggetti, facce e loghi o per l’analisi di documenti.
Resumo:
La formazione, in ambito sanitario, è considerata una grande leva di orientamento dei comportamenti, ma la metodologia tradizionale di formazione frontale non è la più efficace, in particolare nella formazione continua o “long-life education”. L’obiettivo primario della tesi è verificare se l’utilizzo della metodologia dello “studio di caso”, di norma utilizzata nella ricerca empirica, può favorire, nel personale sanitario, l’apprendimento di metodi e strumenti di tipo organizzativo-gestionale, partendo dalla descrizione di processi, decisioni, risultati conseguiti in contesti reali. Sono stati progettati e realizzati 4 studi di caso con metodologia descrittiva, tre nell’Azienda USL di Piacenza e uno nell’Azienda USL di Bologna, con oggetti di studio differenti: la continuità di cura in una coorte di pazienti con stroke e l’utilizzo di strumenti di monitoraggio delle condizioni di autonomia; l’adozione di un approccio “patient-centred” nella presa in carico domiciliare di una persona con BPCO e il suo caregiver; la percezione che caregiver e Medici di Medicina Generale o altri professionisti hanno della rete aziendale Demenze e Alzheimer; la ricaduta della formazione di Pediatri di Libera Scelta sull’attività clinica. I casi di studio sono stati corredati da note di indirizzo per i docenti e sono stati sottoposti a quattro referee per la valutazione dei contenuti e della metodologia. Il secondo caso è stato somministrato a 130 professionisti sanitari all’interno di percorso di valutazione delle competenze e dei potenziali realizzato nell’AUSL di Bologna. I referee hanno commentato i casi e gli strumenti di lettura organizzativa, sottolineando la fruibilità, approvando la metodologia utilizzata, la coniugazione tra ambiti clinico-assistenziali e organizzativi, e le teaching note. Alla fine di ogni caso è presente la valutazione di ogni referee.
Resumo:
In many application domains data can be naturally represented as graphs. When the application of analytical solutions for a given problem is unfeasible, machine learning techniques could be a viable way to solve the problem. Classical machine learning techniques are defined for data represented in a vectorial form. Recently some of them have been extended to deal directly with structured data. Among those techniques, kernel methods have shown promising results both from the computational complexity and the predictive performance point of view. Kernel methods allow to avoid an explicit mapping in a vectorial form relying on kernel functions, which informally are functions calculating a similarity measure between two entities. However, the definition of good kernels for graphs is a challenging problem because of the difficulty to find a good tradeoff between computational complexity and expressiveness. Another problem we face is learning on data streams, where a potentially unbounded sequence of data is generated by some sources. There are three main contributions in this thesis. The first contribution is the definition of a new family of kernels for graphs based on Directed Acyclic Graphs (DAGs). We analyzed two kernels from this family, achieving state-of-the-art results from both the computational and the classification point of view on real-world datasets. The second contribution consists in making the application of learning algorithms for streams of graphs feasible. Moreover,we defined a principled way for the memory management. The third contribution is the application of machine learning techniques for structured data to non-coding RNA function prediction. In this setting, the secondary structure is thought to carry relevant information. However, existing methods considering the secondary structure have prohibitively high computational complexity. We propose to apply kernel methods on this domain, obtaining state-of-the-art results.
Resumo:
Il presente studio ha indagato e valutato alcune abilità cognitive del cane: la capacità di discriminare quantità e le capacità di apprendimento mediante imitazione; quest’ultima è poi stata messa in relazione con l’attaccamento nei confronti del proprietario. Per l’esecuzione della prima indagine sono stati messi appunto due test: il primo si è basato esclusivamente sulla presentazione di uno stimolo visivo: diversi quantitativi di cibo, differenti tra loro del 50%, sono stati presentati al cane; la scelta effettuata dai soggetti testati è stata premiata con differenti tipi di rinforzo differenziale o non differenziale. Il secondo test è stato diviso in due parti: sono stati presentati al cane diversi quantitativi di cibo sempre differenti tra loro del 50% ma nella prima parte del test l’input sensoriale per il cane è stato esclusivamente uditivo mentre nella seconda parte è stato sia uditivo che visivo. Ove è stato possibile è stato applicato ai cani un cardiofrequenzimetro al fine di eseguire una valutazione delle variazioni della frequenza cardiaca nel corso del test. Lo scopo è stato quello di valutare se i soggetti testati erano in grado di discriminare la quantità maggiore. La seconda indagine ha analizzato le capacità di apprendimento di 36 soggetti che sono stati suddivisi in cani da lavoro e pet. I soggetti protagonisti dello studio hanno eseguito il Mirror Test per la valutazione dell’apprendimento per imitazione. I soggetti presi in considerazione, sono stati sottoposti a scansione termografica all’inizio ed al termine del test ed è stata rilevata la loro frequenza respiratoria nella fase iniziale e finale del test. In 11 soggetti che hanno eseguito il precedente test è stato possibile eseguire anche il Strange Situation Test per la valutazione dell’attaccamento al proprietario; i test in questione sono stati videoregistrati ed analizzati per mezzo di un software preposto (OBSERVER XT 10).
Resumo:
MATERIALI E METODI: Tra il 2012 e il 2013, abbiamo analizzato in uno studio prospettico i dati di 48 pazienti sottoposti a ThuLEP con approccio autodidatta. I pazienti sono stati rivalutati a 3, 6, 12 e 24 mesi con la valutazione del PSA, il residuo post-minzionale (RPM), l'uroflussometria (Qmax), l'ecografia transrettale e questionari validati (IPSS: international prostate symptom score e QoL: quality of life) RISULTATI: Il volume medio della prostata è di 63 ± 5,3 ml. Il tempo operatorio medio è stato di 127,58 ± 28.50 minuti. Il peso medio del tessuto asportato è stato di 30,40 ± 13,90 gr. A 6 mesi dopo l'intervento l'RPM medio è diminuito da 165,13 ± 80,15 ml a 7,78 ± 29.19 ml, mentre il Qmax medio è aumentato da 5.75 ± 1.67ml / s a 18.1 ± 5.27 ml / s. I valori medi dei IPSS e QoL hanno dimostrato un progressivo miglioramento: da 19.15 (IQR: 2-31) e 4 (IQR: 1-6) nel preoperatorio a 6.04 (IQR: 1-20) e 1.13 (IQR: 1-4), rispettivamente. Durante la curva di apprendimento si è assistito ad un progressivo aumento del peso del tessuto enucleato e ad una progressiva riduzione del tempo di ospedalizzazione e di cateterismo. Tra le principali complicanze ricordiamo un tasso di incontinenza transitoria del 12,5% a 3 mesi e del 2.1% a 12 mesi. CONCLUSIONI: ThuLEP rappresenta una tecnica chirurgica efficace, sicura e riproducibile indipendentemente dalle dimensioni della prostata. I nostri dati suggeriscono che la ThuLEP offre un miglioramento significativo dei parametri funzionali comparabili con le tecniche tradizionali, nonostante una lunga curva di apprendimento.
Resumo:
Information is nowadays a key resource: machine learning and data mining techniques have been developed to extract high-level information from great amounts of data. As most data comes in form of unstructured text in natural languages, research on text mining is currently very active and dealing with practical problems. Among these, text categorization deals with the automatic organization of large quantities of documents in priorly defined taxonomies of topic categories, possibly arranged in large hierarchies. In commonly proposed machine learning approaches, classifiers are automatically trained from pre-labeled documents: they can perform very accurate classification, but often require a consistent training set and notable computational effort. Methods for cross-domain text categorization have been proposed, allowing to leverage a set of labeled documents of one domain to classify those of another one. Most methods use advanced statistical techniques, usually involving tuning of parameters. A first contribution presented here is a method based on nearest centroid classification, where profiles of categories are generated from the known domain and then iteratively adapted to the unknown one. Despite being conceptually simple and having easily tuned parameters, this method achieves state-of-the-art accuracy in most benchmark datasets with fast running times. A second, deeper contribution involves the design of a domain-independent model to distinguish the degree and type of relatedness between arbitrary documents and topics, inferred from the different types of semantic relationships between respective representative words, identified by specific search algorithms. The application of this model is tested on both flat and hierarchical text categorization, where it potentially allows the efficient addition of new categories during classification. Results show that classification accuracy still requires improvements, but models generated from one domain are shown to be effectively able to be reused in a different one.
Resumo:
EPUB rappresenta attualmente uno dei formati più usati per distribuire pubblicazioni digitali (ebook): è uno standard aperto e libero, i cui scenari d'uso variano dall'utilizzo interno, da parte di editori e aziende di conversione, alle distribuzione e vendita. EPUB è basato sui principali standard web, come HTML5 e CSS ed è progettato per strutturare e renderizzare contenuto reflowable, ottimizzando così la presentazione per il sistema di lettura usato. L'uso di specifiche conosciute e ancora in fase di definizione assicura un alto livello di attenzione e una comunità vivace, ma introduce anche un certo livello di incertezza sui futuri sviluppi. Uno degli aspetti centrali di EPUB è l'apertura totale verso pratiche che rendano il contenuto accessibile a persone con disabilità. Questa apertura è dovuta in parte all'uso degli standard web sopracitati, ma anche dalla consapevolezza che il contenuto accessibile rappresenta un valore aggiunto di notevole entità sia per i fruitori (anche non disabili) sia per gli editori e gli autori (in termini di mercato), creando un circolo virtuoso. Un altro aspetto interessante di EPUB è il suo possibile uso nell'ambito e-learning. È stata creata una specifica (più precisamente un profilo) deputata esclusivamente a questo scopo: EDUPUB. Tale specifica è tuttora in una fase iniziale, poichè ancora in draft, ma può comunque risultare di sicuro interesse per tutti i soggetti già coinvolti nello sviluppo e nell'uso di EPUB e di tecnologie relative all'apprendimento elettronico.
Resumo:
Il documento tratta la famiglia di metodologie di allenamento e sfruttamento delle reti neurali ricorrenti nota sotto il nome di Reservoir Computing. Viene affrontata un'introduzione sul Machine Learning in generale per fornire tutti gli strumenti necessari a comprendere l'argomento. Successivamente, vengono dati dettagli implementativi ed analisi dei vantaggi e punti deboli dei vari approcci, il tutto con supporto di codice ed immagini esplicative. Nel finale vengono tratte conclusioni sugli approcci, su quanto migliorabile e sulle applicazioni pratiche.
Resumo:
In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.
Resumo:
Sistema di segnalazione automatica posti auto su strada. Implementato per Android con tecniche di apprendimento automatico supervisionato e Bluetooth per realizzare un'applicazione Context-Aware.