906 resultados para air permeability
Resumo:
Longitudinal joint quality control/assurance is essential to the successful performance of asphalt pavements and it has received considerable amount of attention in recent years. The purpose of the study is to evaluate the level of compaction at the longitudinal joint and determine the effect of segregation on the longitudinal joint performance. Five paving projects with the use of traditional butt joint, infrared joint heater, edge restraint by milling and modified butt joint with the hot pinch longitudinal joint construction techniques were selected in this study. For each project, field density and permeability tests were made and cores from the pavement were obtained for in-lab permeability, air void and indirect tensile strength. Asphalt content and gradations were also obtained to determine the joint segregation. In general, this study finds that the minimum required joint density should be around 90.0% of the theoretical maximum density based on the AASHTO T166 method. The restrained-edge by milling and butt joint with the infrared heat treatment construction methods both create the joint density higher than this 90.0% limit. Traditional butt joint exhibits lower density and higher permeability than the criterion. In addition, all of the projects appear to have segregation at the longitudinal joint except for the edge-restraint by milling method.
Resumo:
With the use of supplementary cementing materials (SCMs) in concrete mixtures, salt scaling tests such as ASTM C672 have been found to be overly aggressive and do correlate well with field scaling performance. The reasons for this are thought to be because at high replacement levels, SCM mixtures can take longer to set and to develop their properties: neither of these factors is taken into account in the standard laboratory finishing and curing procedures. As a result, these variables were studied as well as a modified scaling test, based on the Quebec BNQ scaling test that had shown promise in other research. The experimental research focused on the evaluation of three scaling resistance tests, including the ASTM C672 test with normal curing as well as an accelerated curing regime used by VDOT for ASTM C1202 rapid chloride permeability tests and now included as an option in ASTM C1202. As well, several variations on the proposed draft ASTM WK9367 deicer scaling resistance test, based on the Quebec Ministry of Transportation BNQ test method, were evaluated for concretes containing varying amounts of slag cement. A total of 16 concrete mixtures were studied using both high alkali cement and low alkali cement, Grade 100 slag and Grade 120 slag with 0, 20, 35 and 50 percent slag replacement by mass of total cementing materials. Vinsol resin was used as the primary air entrainer and Micro Air® was used in two replicate mixes for comparison. Based on the results of this study, a draft alternative test method to ASTM C762 is proposed.
Resumo:
Concrete will suffer frost damage when saturated and subjected to freezing temperatures. Frost-durable concrete can be produced if a specialized surfactant, also known as an air-entraining admixture (AEA), is added during mixing to stabilize microscopic air voids. Small and well-dispersed air voids are critical to produce frost-resistant concrete. Work completed by Klieger in 1952 found the minimum volume of air required to consistently ensure frost durability in a concrete mixture subjected to rapid freezing and thawing cycles. He suggested that frost durability was provided if 18 percent air was created in the paste. This is the basis of current practice despite the tests being conducted on materials that are no longer available using tests that are different from those in use today. Based on the data presented, it was found that a minimum air content of 3.5 percent in the concrete and 11.0 percent in the paste should yield concrete durable in the ASTM C 666 with modern AEAs and low or no lignosulfonate water reducers (WRs). Limited data suggests that mixtures with a higher dosage of lignosulfonate will need about 1 percent more air in the concrete or 3 percent more air in the paste for the materials and procedures used. A spacing factor of 0.008 in. was still found to be necessary to provide frost durability for the mixtures investigated.
Resumo:
We have explored the possibility of obtaining first-order permeability estimates for saturated alluvial sediments based on the poro-elastic interpretation of the P-wave velocity dispersion inferred from sonic logs. Modern sonic logging tools designed for environmental and engineering applications allow one for P-wave velocity measurements at multiple emitter frequencies over a bandwidth covering 5 to 10 octaves. Methodological considerations indicate that, for saturated unconsolidated sediments in the silt to sand range and typical emitter frequencies ranging from approximately 1 to 30 kHz, the observable velocity dispersion should be sufficiently pronounced to allow one for reliable first-order estimations of the permeability structure. The corresponding predictions have been tested on and verified for a borehole penetrating a typical surficial alluvial aquifer. In addition to multifrequency sonic logs, a comprehensive suite of nuclear and electrical logs, an S-wave log, a litholog, and a limited number laboratory measurements of the permeability from retrieved core material were also available. This complementary information was found to be essential for parameterizing the poro-elastic inversion procedure and for assessing the uncertainty and internal consistency of corresponding permeability estimates. Our results indicate that the thus obtained permeability estimates are largely consistent with those expected based on the corresponding granulometric characteristics, as well as with the available evidence form laboratory measurements. These findings are also consistent with evidence from ocean acoustics, which indicate that, over a frequency range of several orders-of-magnitude, the classical theory of poro-elasticity is generally capable of explaining the observed P-wave velocity dispersion in medium- to fine-grained seabed sediments
Resumo:
IMPORTANCE OF THE FIELD: The permeability glycoprotein (P-gp) is an important protein transporter involved in the disposition of many drugs with different chemical structures, but few studies have examined a possible stereoselectivity in its activity. P-gp can have a major impact on the distribution of drugs in selected organs, including the brain. Polymorphisms of the ABCB1 gene, which encodes for P-gp, can influence the kinetics of several drugs. AREAS COVERED IN THIS REVIEW: A search including publications from 1990 up to 2009 was performed on P-gp stereoselectivity and on the impact of ABCB1 polymorphisms on enantiomer brain distribution. WHAT THE READER WILL GAIN: Despite stereoselectivity not being expected because of the large variability of chemical structures of P-gp substrates, structure-activity relationships suggest different P-gp-binding sites for enantiomers. Enantioselectivity in the activity of P-gp has been demonstrated by in vitro studies and in animal models (preferential transport of one enantiomer or different inhibitory potencies towards P-gp activity between enantiomers). There is also in vivo evidence of an enantioselective drug transport at the human blood-brain barrier. TAKE HOME MESSAGE: The significant enantioselective activity of P-gp might be clinically relevant and must be taken into account in future studies.
Resumo:
[Traditions. Asie. Turquie]
Resumo:
Efforts to eliminate rutting on the Interstate system have resulted in 3/4 in. aggregate mixes, with 75 blow Marshall, 85% crushed aggregate mix designs. On a few of these projects paved in 1988-1989, water has appeared on the surfaces. Some conclusions have been reached by visual on-sight investigations that the water is coming from surface water, rain and melting snow gaining entry into the surface asphalt mixture, then coming back out in selected areas. Cores were taken from several Interstate projects and tested for permeability to investigate the surface water theory that supposedly happens with only the 3/4 in. mixtures. All cores were of asphalt overlays over portland cement concrete, except for the Clarke County project which is full depth AC. The testing consisted of densities, permeabilities, voids by high pressure airmeter (HPAM), extraction, gradations, AC content, and film thicknesses. Resilient modulus, indirect tensile and retained strengths after freeze/thaw were also done. All of the test results are about as expected. Permeabilities, the main reason for testing, ranged from 0.00 to 2.67 ft per day and averages less than 1/2 ft per day if the following two tests are disregarded. One test on each binder course came out to 15.24 ft/day, and a surface course at 13.78 ft/day but these are not out of supposedly problem projects.
Resumo:
The purpose of this research was to evaluate the materials Iowa uses as a granular subbase and to determine if it provides adequate drainage. Numerous laboratory and in-situ tests were conducted on the materials currently being used in Iowa. The follow conclusions can be made based on the test results: 1. The crushed concrete that is used as a subbase material has a relatively low permeability compared to many other materials used by other states. 2. Further research and tests are needed to find the necessary parameters for crushed concrete to make sure it is providing its optimum drainage and preventing premature damage of the pavement. 3. We have definitely made improvements in drainage in the past few months, but there are many areas that we can improve on that will increase the permeability of this material and insure that the pavement system is safe from premature damage due to water. The current gradation specification for granular subbase material at the start of this study was: Sieve # % Passing 1” 100 #8 10-35 #50 0-15 #200 0-6
Resumo:
Iowa's secondary roads contain nearly 15,000 bridges which are less than 40 ft (12.2 m) in length. Many of these bridges were built several decades ago and need to be replaced. Box culvert construction has proven to be an adequate bridge replacement technique. Recently a new bridge replacement alternative, called the Air-O-Form method, has emerged which has several potential advantages over box culvert construction. This new technique uses inflated balloons as the interior form in the construction of an arch culvert. Concrete was then shotcreted onto the balloon form. The objective of research project HR-313 was to construct an air formed arch culvert to determine the applicability of the Air-O-Form technique as a county bridge replacement alternative. The project had the following results: The Air-O-Form method can be used to construct a structurally sound arch culvert; and the method must become more economical if it is to compete with box culverts. Continued monitoring should be conducted in order to evaluate the long-term performance of the Air-O-Form method.
Resumo:
Iowa's secondary road network contains nearly 15,000 bridges which are less than 12 m (40 ft) long. Many of these bridges were built several decades ago and need to be replaced. Box culvert construction has proven to be an adequate bridge replacement technique. An alternative to box culverts is the Air-O-Form method of arch culvert construction. The Air-O-Form method has several potential advantages over box culvert construction. The new technique uses inflated balloons as the interior form in the construction of an arch culvert. Concrete is then shotcreted onto the balloon form to complete the arch culvert. The objective of the research project was to construct an air formed arch culvert to determine its applicability as an alternative county bridge replacement technique. The project had the following results: (1) The Air-O-Form method can be used to construct a structurally sound arch culvert; and (2) The method must become more economical if it is to compete with box culverts.
Resumo:
Light toxicity is suspected to enhance certain retinal degenerative processes such as age-related macular degeneration. Death of photoreceptors can be induced by their exposure to the visible light, and although cellular processes within photoreceptors have been characterized extensively, the role of the retinal pigment epithelium (RPE) in this model is less well understood. We demonstrate that exposition to intense light causes the immediate breakdown of the outer blood-retinal barrier (BRB). In a molecular level, we observed the slackening of adherens junctions tying up the RPE and massive leakage of albumin into the neural retina. Retinal pigment epithelial cells normally secrete vascular endothelial growth factor (VEGF) at their basolateral side; light damage in contrast leads to VEGF increase on the apical side - that is, in the neuroretina. Blocking VEGF, by means of lentiviral gene transfer to express an anti-VEGF antibody in RPE cells, inhibits outer BRB breakdown and retinal degeneration, as illustrated by functional, behavioral and morphometric analysis. Our data show that exposure to high levels of visible light induces hyperpermeability of the RPE, likely involving VEGF signaling. The resulting retinal edema contributes to irreversible damage to photoreceptors. These data suggest that anti-VEGF compounds are of therapeutic interest when the outer BRB is altered by retinal stresses.
Resumo:
This report discusses the asphalt pavement recycling project designated Project HR-188 in Kossuth County, Iowa. Specific objectives were: (a) to determine the effectiveness of drum mixing plant modifications designed to control air pollution within limits specified by the Iowa Department of Environmental Quality; (b) to assess the impact of varying the proportions of recycled and virgin aggregates, (c) to assess the impact of varying the production rate of the plant, and (d) to assess the impact of varying the mixing temperature. The discussion includes information on the proposed use of research funds, project location and description, the project planning conference, plan development, bid letting, asphalt plant configuration, actual plant operation, why this method is successful, probable process limitations, pollution results, recycled pavement test results, and the cost of virgin vs. recycled asphalt pavements.