999 resultados para adhesive factor
Resumo:
O objectivo da Realidade Virtual é simples de entender mas muito difícil de implementar: criar ambientes completamente indiferenciáveis do mundo real com os quais se possa interagir de um modo natural. Desde a criação do Sensorama por Morton Heiling em 1962, passando pela difusão do conceito pelo público geral na década de 90 até os dias de hoje, a evolução da Realidade Virtual tem sido constante. Este conjunto de tecnologias tem estado envolvido por uma certa descrença por parte da sociedade, motivada pelas grandes expectativas que lhe foram atribuídas e pelo estado de desenvolvimento do hardware aquando do seu auge. No entanto, actualmente assiste-se a um ressurgimento do seu interesse no público geral com a introdução de imagem estereoscópica no cinema ou o sucesso dos controladores da consola Nintendo Wii. Hoje em dia as suas aplicações são muito variadas: desde o treino de pilotos de avião ao tratamento de fobias, passando pela industria do entretenimento e a visita virtual de locais com interesse histórico ou turístico. O objectivo desta tese de mestrado é explorar uma área que ainda não tem sido muito abrangida pela Realidade Virtual e que cobre também aspectos educacionais e lúdicos de modo a ser um factor de atracção para os estudantes do ensino secundário: a simulação de instrumentos musicais. Para tal foi implementado um sistema capaz de simular instrumentos musicais de percussão (uma bateria) utilizando imagem estereoscópica, som posicional e interfaces com o utilizador realistas. Os resultados obtidos nas sessões de avaliação efectuadas por alunos recentemente ingressados no ensino superior demonstram que o sistema desenvolvido, bem como a inovação em interfaces do utilizador com os dispositivos electrónicos de uma forma geral, constituem um meio efectivo na sua motivação para a escolha de um curso na área da engenharia.
Resumo:
Adhesive bonding has become more efficient in the last few decades due to the adhesives developments, granting higher strength and ductility. On the other hand, natural fibre composites have recently gained interest due to the low cost and density. It is therefore essential to predict the fracture behavior of joints between these materials, to assess the feasibility of joining or repairing with adhesives. In this work, the tensile fracture toughness (Gc n) of adhesive joints between natural fibre composites is studied, by bonding with a ductile adhesive and co-curing. Conventional methods to obtain Gc n are used for the co-cured specimens, while for the adhesive within the bonded joint, the J-integral is considered. For the J-integral calculation, an optical measurement method is developed for the evaluation of the crack tip opening and adherends rotation at the crack tip during the test, supported by a Matlab sub-routine for the automated extraction of these quantities. As output of this work, an optical method that allows an easier and quicker extraction of the parameters to obtain Gc n than the available methods is proposed (by the J-integral technique), and the fracture behaviour in tension of bonded and co-cured joints in jute-reinforced natural fibre composites is also provided for the subsequent strength prediction. Additionally, for the adhesively- bonded joints, the tensile cohesive law of the adhesive is derived by the direct method.
Resumo:
Component joining is typically performed by welding, fastening, or adhesive-bonding. For bonded aerospace applications, adhesives must withstand high-temperatures (200°C or above, depending on the application), which implies their mechanical characterization under identical conditions. The extended finite element method (XFEM) is an enhancement of the finite element method (FEM) that can be used for the strength prediction of bonded structures. This work proposes and validates damage laws for a thin layer of an epoxy adhesive at room temperature (RT), 100, 150, and 200°C using the XFEM. The fracture toughness (G Ic ) and maximum load ( ); in pure tensile loading were defined by testing double-cantilever beam (DCB) and bulk tensile specimens, respectively, which permitted building the damage laws for each temperature. The bulk test results revealed that decreased gradually with the temperature. On the other hand, the value of G Ic of the adhesive, extracted from the DCB data, was shown to be relatively insensitive to temperature up to the glass transition temperature (T g ), while above T g (at 200°C) a great reduction took place. The output of the DCB numerical simulations for the various temperatures showed a good agreement with the experimental results, which validated the obtained data for strength prediction of bonded joints in tension. By the obtained results, the XFEM proved to be an alternative for the accurate strength prediction of bonded structures.
Resumo:
Adhesively-bonded joints are extensively used in several fields of engineering. Cohesive Zone Models (CZM) have been used for the strength prediction of adhesive joints, as an add-in to Finite Element (FE) analyses that allows simulation of damage growth, by consideration of energetic principles. A useful feature of CZM is that different shapes can be developed for the cohesive laws, depending on the nature of the material or interface to be simulated, allowing an accurate strength prediction. This work studies the influence of the CZM shape (triangular, exponential or trapezoidal) used to model a thin adhesive layer in single-lap adhesive joints, for an estimation of its influence on the strength prediction under different material conditions. By performing this study, guidelines are provided on the possibility to use a CZM shape that may not be the most suited for a particular adhesive, but that may be more straightforward to use/implement and have less convergence problems (e.g. triangular shaped CZM), thus attaining the solution faster. The overall results showed that joints bonded with ductile adhesives are highly influenced by the CZM shape, and that the trapezoidal shape fits best the experimental data. Moreover, the smaller is the overlap length (LO), the greater is the influence of the CZM shape. On the other hand, the influence of the CZM shape can be neglected when using brittle adhesives, without compromising too much the accuracy of the strength predictions.
Resumo:
OBJECTIVE: The objective of this study was to evaluate whether adolescent pregnancy is a risk factor for low birth weight (LBW) babies. METHODS: This was a cross-sectional study of mothers and their newborns from a birth cohort in Aracaju, Northeastern Brazil. Data were collected consecutively from March to July 2005. Information collected included socioeconomic, biological and reproductive aspects of the mothers, using a standardized questionnaire. The impact of early pregnancy on birth weight was evaluated by multiple logistic regression. RESULTS: We studied 4,746 pairs of mothers and their babies. Of these, 20.6% were adolescents (< 20 years of age). Adolescent mothers had worse socioeconomic and reproductive conditions and perinatal outcomes when compared to other age groups. Having no prenatal care and smoking during pregnancy were the risk factors associated with low birth weight. Adolescent pregnancy, when linked to marital status "without partner", was associated with an increased proportion of low birth weight babies. CONCLUSIONS: Adolescence was a risk factor for LBW only for mothers without partners. Smoking during pregnancy and lack of prenatal care were considered to be independent risk factors for LBW.
Resumo:
Mestrado em Gestão e Empreendedorismo
Resumo:
Mestrado em Gestão e Empreendedorismo
Resumo:
As Tecnologia de Informação, são certamente uma pedra base da sociedade de hoje e das vindouras. Estas têm modificado as relações sociais, culturais e organizacionais, tendo-se repercutido na sociedade, de diferentes formas. A análise aqui proposta, visa o mundo das organizações e o reconhecimento do peso do factor humano dentro desta, quer na forma como as relações entre os vários actores são mediadas por estas novas tecnologias, quer no que conceme às modificações produzidas por estas no trabalho e consequentemente nas qualificações dos operadores. O desenvolvimento desta análise, parte de uma perspectiva antropocêntrica, que tem, como premissas de partida o valor humano e as características culturais de cada organização. A proposta aqui apresentada, é sobretudo um alerta, para uma maior colaboração interdiscipliiar no desenho das Tecnologias de Informação, visando a plena integração do factor humano no desempenho destas tecnologias. Por último cabe aqui aludir ao estudo de caso, que tem por objecto de estudo um Sistema Flexível de Produção e a inclusão de um posto de trabaího no Sistema. A opção de organização do trabalho, visa sobretudo capacitar, o factor humano de competências e qualificações que lhe permitam o enobrecimento do seu posto de trabalho. É uma opção que assenta na divisão maleável do trabalho, sendo necessário um operador qualificado, mas também polivalente de forma a permitir ao indivíduo executar o conjunto de tarefas que comporta o posto de trabalho.
Resumo:
Polyolefins are especially difficult to bond due to their non-polar, non-porous and chemically inert surfaces. Acrylic adhesives used in industry are particularly suited to bond these materials, including many grades of polypropylene (PP) and polyethylene (PE), without special surface preparation. In this work, the tensile strength of single-lap PE and mixed joints bonded with an acrylic adhesive was investigated. The mixed joints included PE with aluminium (AL) or carbon fibre reinforced plastic (CFRP) substrates. The PE substrates were only cleaned with isopropanol, which assured cohesive failures. For the PE CFRP joints, three different surfaces preparations were employed for the CFRP substrates: cleaning with acetone, abrasion with 100 grit sand paper and peel-ply finishing. In the PE AL joints, the AL bonding surfaces were prepared by the following methods: cleaning with acetone, abrasion with 180 and 320 grit sand papers, grit blasting and chemical etching with chromic acid. After abrasion of the CFRP and AL substrates, the surfaces were always cleaned with acetone. The tensile strengths were compared with numerical results from ABAQUS® and a mixed mode (I+II) cohesive damage model. A good agreement was found between the experimental and numerical results, except for the PE AL joints, since the AL surface treatments were not found to be effective.
Resumo:
In this work, the shear modulus and strength of the acrylic adhesive 3M® DP 8005 was evaluated by two different methods: the Thick Adherend Shear Test (TAST) and the Notched Plate Shear Method (Arcan). However, TAST standards advise the use of a special extensometer attached to the specimen, which requires a very experienced technician. In the present study, the adhesive shear displacement for the TAST was measured using an optical technique, and also with a conventional inductive extensometer of 25 mm used for tensile tests. This allowed for an assessment of suitability of using a conventional extensometer to measure this parameter. Since the results obtained by the two techniques are identical, it can be concluded that using a conventional extensometer is a valid option to obtain the shear modulus for the particular adhesive used. In the Arcan tests, the adhesive shear displacement was only measured using the optical technique. This work also aimed the comparison of shear modulus and strength obtained by the TAST and Arcan test methods.
Resumo:
Bonded unions are gaining importance in many fields of manufacturing owing to a significant number of advantages to the traditional fastening, riveting, bolting and welding techniques. Between the available bonding configurations, the single-lap joint is the most commonly used and studied by the scientific community due to its simplicity, although it endures significant bending due to the non-collinear load path, which negatively affects its load bearing capabilities. The use of material or geometric changes in single-lap joints is widely documented in the literature to reduce this handicap, acting by reduction of peel and shear peak stresses at the damage initiation sites in structures or alterations of the failure mechanism emerging from local modifications. In this work, the effect of hole drilling at the overlap on the strength of single-lap joints was analyzed experimentally with two main purposes: (1) to check whether or not the anchorage effect of the adhesive within the holes is more preponderant than the stress concentrations near the holes, arising from the sharp edges, and modification of the joints straining behaviour (strength improvement or reduction, respectively) and (2) picturing a real scenario on which the components to be bonded are modified by some external factor (e.g. retrofitting of decaying/old-fashioned fastened unions). Tests were made with two adhesives (a brittle and a ductile one) varying the adherend thickness and the number, layout and diameter of the holes. Experimental testing showed that the joints strength never increases from the un-modified condition, showing a varying degree of weakening, depending on the selected adhesive and hole drilling configuration.
Resumo:
Purpose: Pressure ulcers are a high cost, high volume issue for health and medical care providers, having a detrimental effect on patients and relatives. Pressure ulcer prevention is widely covered in the literature, but little has been published regarding the risk to patients in the radiographical setting. This review of the current literature is to identify findings relevant to radiographical context. Methods: Literature searching was performed using Science Direct and Medline databases. The search was limited to articles published in the last ten years to remain current and excluded studies containing participants less than 17 years of age. In total 14 studies were acquired; three were excluded as they were not relevant. The remaining 11 studies were compared and reviewed. Discussion: Eight of the studies used ‘healthy’ participants and three used symptomatic participants. Nine studies explored interface pressure with a range of pressure mat technologies, two studies measured shear (MRI finite element modelling, and a non-invasive instrument), and one looked at blood flow and haemoglobin oxygenation. A range of surfaces were considered from trauma, nursing and surgical backgrounds for their ability to reduce pressure including standard mattresses, high specification mattresses, rigid and soft layer spine boards, various overlays (gel, air filled, foam). Conclusion: The current literature is not appropriate for the radiographic patient and cannot be extrapolated to a radiologic context. Sufficient evidence is presented in this review to support the need for further work specific to radiography in order to minimise the development of PU in at risk patients.
Resumo:
In this study, the tensile strength of single-lap joints (SLJs) between similar and dissimilar adherends bonded with an acrylic adhesive was evaluated experimentally and numerically. The adherend materials included polyethylene (PE), polypropylene (PP), carbon-epoxy (CFRP), and glass-polyester (GFRP) composites. The following adherend combinations were tested: PE/PE, PE/PP, PE/CFRP, PE/GFRP, PP/PP, CFRP/CFRP, and GFRP/GFRP. One of the objectives of this work was to assess the influence of the adherends stiffness on the strength of the joints since it significantly affects the peel stresses magnitude in the adhesive layer. The experimental results were also used to validate a new mixed-mode cohesive damage model developed to simulate the adhesive layer. Thus, the experimental results were compared with numerical simulations performed in ABAQUS®, including a developed mixed-mode (I+II) cohesive damage model, based on the indirect use of fracture mechanics and implemented within interface finite elements. The cohesive laws present a trapezoidal shape with an increasing stress plateau, to reproduce the behaviour of the ductile adhesive used. A good agreement was found between the experimental and numerical results.
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática
Resumo:
The amoebae's cytotoxicity test and the amoebae's lysis test were used to show possible interactions between rheumatoid factor (RF) and Entamoeba histolytica. Amoebae's cytotoxic activity (ACA) was inhibited by affinity chromatography purified antiamoebae rabbit IgG (RIgG). Enhanced inhibition could be demonstrated with RIgG plus RF. But the same marked inhibition of ACA could be seen when replacing RF by heat inactivated normal human serum as a control. About 50% amoebae's lysis occurred when amoebae were brought together with native normal human serum (NNHS) as a source of complement. Amoebae's lysis increased to 60% when incubated with NHS plus human antiamoebae antibodies. No further augmentation could be obtained by the addition of RF. Using RIgG instead of human antibodies the lysis rate did not increase. Incubation of amoebae, NNHS, RIgG and RF even reduced amoebae's lysis. RF neither has an effect on ACA nor on complement mediated AL in vitro.