994 resultados para Waveform independent frame-timing acquisition
Resumo:
Cloud computing is increasingly being adopted in different scenarios, like social networking, business applications, scientific experiments, etc. Relying in virtualization technology, the construction of these computing environments targets improvements in the infrastructure, such as power-efficiency and fulfillment of users’ SLA specifications. The methodology usually applied is packing all the virtual machines on the proper physical servers. However, failure occurrences in these networked computing systems can induce substantial negative impact on system performance, deviating the system from ours initial objectives. In this work, we propose adapted algorithms to dynamically map virtual machines to physical hosts, in order to improve cloud infrastructure power-efficiency, with low impact on users’ required performance. Our decision making algorithms leverage proactive fault-tolerance techniques to deal with systems failures, allied with virtual machine technology to share nodes resources in an accurately and controlled manner. The results indicate that our algorithms perform better targeting power-efficiency and SLA fulfillment, in face of cloud infrastructure failures.
Resumo:
Frame rate upconversion (FRUC) is an important post-processing technique to enhance the visual quality of low frame rate video. A major, recent advance in this area is FRUC based on trilateral filtering which novelty mainly derives from the combination of an edge-based motion estimation block matching criterion with the trilateral filter. However, there is still room for improvement, notably towards reducing the size of the uncovered regions in the initial estimated frame, this means the estimated frame before trilateral filtering. In this context, proposed is an improved motion estimation block matching criterion where a combined luminance and edge error metric is weighted according to the motion vector components, notably to regularise the motion field. Experimental results confirm that significant improvements are achieved for the final interpolated frames, reaching PSNR gains up to 2.73 dB, on average, regarding recent alternative solutions, for video content with varied motion characteristics.
Resumo:
Introduction Myocardial Perfusion Imaging (MPI) is a very important tool in the assessment of Coronary Artery Disease ( CAD ) patient s and worldwide data demonstrate an increasingly wider use and clinical acceptance. Nevertheless, it is a complex process and it is quite vulnerable concerning the amount and type of possible artefacts, some of them affecting seriously the overall quality and the clinical utility of the obtained data. One of the most in convenient artefacts , but relatively frequent ( 20% of the cases ) , is relate d with patient motion during image acquisition . Mostly, in those situations, specific data is evaluated and a decisi on is made between A) accept the results as they are , consider ing that t he “noise” so introduced does not affect too seriously the final clinical information, or B) to repeat the acquisition process . Another possib ility could be to use the “ Motion Correcti on Software” provided within the software package included in any actual gamma camera. The aim of this study is to compare the quality of the final images , obtained after the application of motion correction software and after the repetition of image acqui sition. Material and Methods Thirty cases of MPI affected by Motion Artefacts and repeated , were used. A group of three, independent (blinded for the differences of origin) expert Nuclear Medicine Clinicians had been invited to evaluate the 30 sets of thre e images - one set for each patient - being ( A) original image , motion uncorrected , (B) original image, motion corrected, and (C) second acquisition image, without motion . The results so obtained were statistically analysed . Results and Conclusion Results obtained demonstrate that the use of the Motion Correction Software is useful essentiall y if the amplitude of movement is not too important (with this specific quantification found hard to define precisely , due to discrepancies between clinicians and other factors , namely between one to another brand); when that is not the case and the amplitude of movement is too important , the n the percentage of agreement between clinicians is much higher and the repetition of the examination is unanimously considered ind ispensable.
Resumo:
Copyright © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Mestrado em Auditoria
Resumo:
The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications.
Resumo:
Linear unmixing decomposes a hyperspectral image into a collection of reflectance spectra of the materials present in the scene, called endmember signatures, and the corresponding abundance fractions at each pixel in a spatial area of interest. This paper introduces a new unmixing method, called Dependent Component Analysis (DECA), which overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical properties of hyperspectral data. DECA models the abundance fractions as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. The mixing matrix is inferred by a generalized expectation-maximization (GEM) type algorithm. The performance of the method is illustrated using simulated and real data.
Resumo:
Purpose - To compare the image quality and effective dose applying the 10 kVp rule with manual mode acquisition and AEC mode in PA chest X-ray. Method - 68 images (with and without lesions) were acquired using an anthropomorphic chest phantom using a Wolverson Arcoma X-ray unit. These images were compared against a reference image using the 2 alternative forced choice (2AFC) method. The effective dose (E) was calculated using PCXMC software using the exposure parameters and the DAP. The exposure index (lgM provided by Agfa systems) was recorded. Results - Exposure time decreases more when applying the 10 kVp rule with manual mode (50%–28%) when compared with automatic mode (36%–23%). Statistical differences for E between several ionization chambers' combinations for AEC mode were found (p = 0.002). E is lower when using only the right AEC ionization chamber. Considering the image quality there are no statistical differences (p = 0.348) between the different ionization chambers' combinations for AEC mode for images with no lesions. Considering lgM values, it was demonstrated that they were higher when the AEC mode was used compared to the manual mode. It was also observed that lgM values obtained with AEC mode increased as kVp value went up. The image quality scores did not demonstrate statistical significant differences (p = 0.343) for the images with lesions comparing manual with AEC mode. Conclusion - In general the E is lower when manual mode is used. By using the right AEC ionising chamber under the lung the E will be the lowest in comparison to other ionising chambers. The use of the 10 kVp rule did not affect the visibility of the lesions or image quality.
Resumo:
A deteção e seguimento de pessoas tem uma grande variedade de aplicações em visão computacional. Embora tenha sido alvo de anos de investigação, continua a ser um tópico em aberto, e ainda hoje, um grande desafio a obtenção de uma abordagem que inclua simultaneamente exibilidade e precisão. O trabalho apresentado nesta dissertação desenvolve um caso de estudo sobre deteção e seguimento automático de faces humanas, em ambiente de sala de reuniões, concretizado num sistema flexível de baixo custo. O sistema proposto é baseado no sistema operativo GNU's Not Unix (GNU) linux, e é dividido em quatro etapas, a aquisição de vídeo, a deteção da face, o tracking e reorientação da posição da câmara. A aquisição consiste na captura de frames de vídeo das três câmaras Internet Protocol (IP) Sony SNC-RZ25P, instaladas na sala, através de uma rede Local Area Network (LAN) também ele já existente. Esta etapa fornece os frames de vídeo para processamento à detecção e tracking. A deteção usa o algoritmo proposto por Viola e Jones, para a identificação de objetos, baseando-se nas suas principais características, que permite efetuar a deteção de qualquer tipo de objeto (neste caso faces humanas) de uma forma genérica e em tempo real. As saídas da deteção, quando é identificado com sucesso uma face, são as coordenadas do posicionamento da face, no frame de vídeo. As coordenadas da face detetada são usadas pelo algoritmo de tracking, para a partir desse ponto seguir a face pelos frames de vídeo subsequentes. A etapa de tracking implementa o algoritmo Continuously Adaptive Mean-SHIFT (Camshift) que baseia o seu funcionamento na pesquisa num mapa de densidade de probabilidade, do seu valor máximo, através de iterações sucessivas. O retorno do algoritmo são as coordenadas da posição e orientação da face. Estas coordenadas permitem orientar o posicionamento da câmara de forma que a face esteja sempre o mais próximo possível do centro do campo de visão da câmara. Os resultados obtidos mostraram que o sistema de tracking proposto é capaz de reconhecer e seguir faces em movimento em sequências de frames de vídeo, mostrando adequabilidade para aplicação de monotorização em tempo real.
Resumo:
Mestrado em Tecnologia de Diagnóstico e Intervenção Cardiovascular - Ramo de especialização: Ultrassonografia Cardiovascular
Resumo:
Prostate cancer (PCa), a leading cause of cancer-related morbidity and mortality, arises through the acquisition of genetic and epigenetic alterations. Deregulation of histone methyltransferases (HMTs) or demethylases (HDMs) has been associated with PCa development and progression. However, the precise influence of altered HMTs or HDMs expression and respective histone marks in PCa onset and progression remains largely unknown. To clarify the role of HMTs and HDMs in prostate carcinogenesis, expression levels of 37 HMTs and 20 HDMs were assessed in normal prostate and PCa tissue samples by RT-qPCR. SMYD3, SUV39H2, PRMT6, KDM5A, and KDM6A were upregulated, whereas KMT2A-E (MLL1-5) and KDM4B were downregulated in PCa, compared with normal prostate tissues. Remarkably, PRMT6 was the histone modifier that best discriminated normal from tumorous tissue samples. Interestingly, EZH2 and SMYD3 expression levels significantly correlated with less differentiated and more aggressive tumors. Remarkably, SMYD3 expression levels were of independent prognostic value for the prediction of disease-specific survival of PCa patients with clinically localized disease submitted to radical prostatectomy. We concluded that expression profiling of HMTs and HDMs, especially SMYD3, might be of clinical usefulness for the assessment of PCa patients and assist in pre-therapeutic decision-making.
Resumo:
Although power-line communication (PLC) is not a new technology, its use to support communication with timing requirements is still the focus of ongoing research. Recently, a new infrastructure was presented, intended for communication using power lines from a central location to geographically dispersed nodes using inexpensive devices. This new infrastructure uses a two-level hierarchical power-line system, together with an IP-based network. Within this infrastructure, in order to provide end-toend communication through the two levels of the powerline system, it is necessary to fully understand the behaviour of the underlying network layers. The masterslave behaviour of the PLC MAC, together with the inherent dynamic topology of power-line networks are important issues that must be fully characterised. Therefore, in this paper we present a simulation model which is being used to study and characterise the behaviour of power-line communication.
Resumo:
Coronary artery disease (CAD) is currently one of the most prevalent diseases in the world population and calcium deposits in coronary arteries are one direct risk factor. These can be assessed by the calcium score (CS) application, available via a computed tomography (CT) scan, which gives an accurate indication of the development of the disease. However, the ionising radiation applied to patients is high. This study aimed to optimise the protocol acquisition in order to reduce the radiation dose and explain the flow of procedures to quantify CAD. The main differences in the clinical results, when automated or semiautomated post-processing is used, will be shown, and the epidemiology, imaging, risk factors and prognosis of the disease described. The software steps and the values that allow the risk of developingCADto be predicted will be presented. A64-row multidetector CT scan with dual source and two phantoms (pig hearts) were used to demonstrate the advantages and disadvantages of the Agatston method. The tube energy was balanced. Two measurements were obtained in each of the three experimental protocols (64, 128, 256 mAs). Considerable changes appeared between the values of CS relating to the protocol variation. The predefined standard protocol provided the lowest dose of radiation (0.43 mGy). This study found that the variation in the radiation dose between protocols, taking into consideration the dose control systems attached to the CT equipment and image quality, was not sufficient to justify changing the default protocol provided by the manufacturer.
Resumo:
Embedded real-time systems often have to support the embedding system in very different and changing application scenarios. An aircraft taxiing, taking off and in cruise flight is one example. The different application scenarios are reflected in the software structure with a changing task set and thus different operational modes. At the same time there is a strong push for integrating previously isolated functionalities in single-chip multicore processors. On such multicores the behavior of the system during a mode change, when the systems transitions from one mode to another, is complex but crucial to get right. In the past we have investigated mode change in multiprocessor systems where a mode change requires a complete change of task set. Now, we present the first analysis which considers mode changes in multicore systems, which use global EDF to schedule a set of mode independent (MI) and mode specific (MS) tasks. In such systems, only the set of MS tasks has to be replaced during mode changes, without jeopardizing the schedulability of the MI tasks. Of prime concern is that the mode change is safe and efficient: i.e. the mode change needs to be performed in a predefined time window and no deadlines may be missed as a function of the mode change.
Resumo:
Introdução – A estimativa da função renal relativa (FRR) através de cintigrafia renal (CR) com ácido dimercaptossuccínico marcado com tecnécio-99 metaestável (99mTc-DMSA) pode ser influenciada pela profundidade renal (PR), atendendo ao efeito de atenuação por parte dos tecidos moles que envolvem os rins. Dado que raramente é conhecida esta mesma PR, diferentes métodos de correção de atenuação (CA) foram desenvolvidos, nomeadamente os que utilizam fórmulas empíricas, como os de Raynaud, de Taylor ou de Tonnesen, ou recorrendo à aplicação direta da média geométrica (MG). Objetivos – Identificar a influência dos diferentes métodos de CA na quantificação da função renal relativa através da CR com 99mTc-DMSA e avaliar a respetiva variabilidade dos resultados de PR. Metodologia – Trinta e um pacientes com indicação para realização de CR com 99mTc-DMSA foram submetidos ao mesmo protocolo de aquisição. O processamento foi efetuado por dois operadores independentes, três vezes por exame, variando para o mesmo processamento o método de determinação da FRR: Raynaud, Taylor, Tonnesen, MG ou sem correção de atenuação (SCA). Aplicou-se o teste de Friedman para o estudo da influência dos diferentes métodos de CA e a correlação de Pearson para a associação e significância dos valores de PR com as variáveis idade, peso e altura. Resultados – Da aplicação do teste de Friedman verificaram-se diferenças estatisticamente significativas entre os vários métodos (p=0,000), excetuando as comparações SCA/Raynaud, Tonnesen/MG e Taylor/MG (p=1,000) para ambos os rins. A correlação de Pearson demonstra que a variável peso apresenta uma correlação forte positiva com todos os métodos de cálculo da PR. Conclusões – O método de Taylor, entre os três métodos de cálculo de PR, é o que apresenta valores de FRR mais próximos da MG. A escolha do método de CA influencia significativamente os parâmetros quantitativos de FRR.