979 resultados para Wave Parameters
Resumo:
The possibility to discriminate between the relative importance of the fluxes of energy and matter in plasma-surface interaction is demonstrated by the energy flux measurements in low-temperature plasmas ignited by the radio frequency discharge (power and pressure ranges 50-250 W and 8-11.5 Pa) in Ar, Ar+ H2, and Ar+ H2 + CH4 gas mixtures typically used in nanoscale synthesis and processing of silicon- and carbon-based nanostructures. It is shown that by varying the gas composition and pressure, the discharge power, and the surface bias one can effectively control the surface temperature and the matter supply rates. The experimental findings are explained in terms of the plasma-specific reactions in the plasma bulk and on the surface.
Resumo:
Cold atmospheric-pressure plasma plumes are generated in the ambient air by a single-electrode plasma jet device powered by pulsed dc and ac sine-wave excitation sources. Comprehensive comparisons of the plasma characteristics, including electrical properties, optical emission spectra, gas temperatures, plasma dynamics, and bacterial inactivation ability of the two plasmas are carried out. It is shown that the dc pulse excited plasma features a much larger discharge current and stronger optical emission than the sine-wave excited plasma. The gas temperature in the former discharge remains very close to the room temperature across the entire plume length; the sine-wave driven discharge also shows a uniform temperature profile, which is 20-30 degrees higher than the room temperature. The dc pulse excited plasma also shows a better performance in the inactivation of gram-positive staphylococcus aureus bacteria. These results suggest that the pulsed dc electric field is more effective for the generation of nonequilibrium atmospheric pressure plasma plumes for advanced plasma health care applications.
Resumo:
The development, operation, and applications of two configurations of an integrated plasma-aided nanofabrication facility (IPANF) comprising low-frequency inductively coupled plasma-assisted, low-pressure, multiple-target RF magnetron sputtering plasma source, are reported. The two configurations of the plasma source have different arrangements of the RF inductive coil: a conventional external flat spiral "pancake" coil and an in-house developed internal antenna comprising two orthogonal RF current sheets. The internal antenna configuration generates a "unidirectional" RF current that deeply penetrates into the plasma bulk and results in an excellent uniformity of the plasma over large areas and volumes. The IPANF has been employed for various applications, including low-temperature plasma-enhanced chemical vapor deposition of vertically aligned single-crystalline carbon nanotips, growth of ultra-high aspect ratio semiconductor nanowires, assembly of optoelectronically important Si, SiC, and Al1-xInxN quantum dots, and plasma-based synthesis of bioactive hydroxyapatite for orthopedic implants.
Resumo:
Carbon nanotips have been synthesized from a thin carbon film deposited on silicon by bias-enhanced hot filament chemical vapor deposition under different process parameters. The results of scanning electron microscopy indicate that high-quality carbon nanotips can only be obtained under conditions when the ion flux is effectively drawn from the plasma sustained in a CH4 + NH3 + H2 gas mixture. It is shown that the morphology of the carbon nanotips can be controlled by varying the process parameters such as the applied bias, gas pressure, and the NH3 / H2 mass flow ratios. The nanotip formation process is examined through a model that accounts for surface diffusion, in addition to sputtering and deposition processes included in the existing models. This model makes it possible to explain the major difference in the morphologies of the carbon nanotips formed without and with the aid of the plasma as well as to interpret the changes of their aspect ratio caused by the variation in the ion/gas fluxes. Viable ways to optimize the plasma-based process parameters to synthesize high-quality carbon nanotips are suggested. The results are relevant to the development of advanced plasma-/ion-assisted methods of nanoscale synthesis and processing.
Resumo:
The effects of various discharge parameters and ambient gas on the length of He atmospheric plasma jet plumes expanding into the open air are studied. It is found that the voltage and width of the discharge-sustaining pulses exert significantly stronger effects on the plume length than the pulse frequency, gas flow rate, and nozzle diameter. This result is explained through detailed analysis of the I-V characteristics of the primary and secondary discharges which reveals the major role of the integrated total charges of the primary discharge in the plasma dynamics. The length of the jet plume can be significantly increased by guiding the propagating plume into a glass tube attached to the nozzle. This increase is attributed to elimination of the diffusion of surrounding air into the plasma plume, an absence which facilitates the propagation of the ionization front. These results are important for establishing a good level of understanding of the expansion dynamics and for enabling a high degree of control of atmospheric pressure plasmas in biomedical, materials synthesis and processing, environmental and other existing and emerging industrial applications. © 2009 American Institute of Physics.
Resumo:
The nanopowder management and control of plasma parameters in electronegative SiH4 plasmas were discussed. The spatial profiles of electron and positive/negative ion number densities, electron temperature and charge of the fine particles were obtained. It was found that management of powder charge distribution is also possible through control of the external parameters.
Resumo:
Parameters of a discharge sustained in a planar magnetron configuration with crossed electric and magnetic fields are studied experimentally and numerically. By comparing the data obtained in the experiment with the results of calculations made using the proposed theoretical model, conclusion was made about the leading role of the turbulence-driven Bohm electron conductivity in the low-pressure operation mode (up to 1 Pa) of the discharge in crossed electric and magnetic fields. A strong dependence of the width of the cathode sputter trench, associated with the ionization region of the magnetron discharge, on the discharge parameters was observed in the experiments. The experimental data were used as input parameters in the discharge model that describes the motion of secondary electrons across the magnetic field in the ionization region and takes into account the classical, near-wall, and Bohm mechanisms of electron conductivity.
Resumo:
Conventional catalyzed thermal CVD of carbon microcoils commonly suffers from poor control of the coil shape and morphology and rarely reaches the nanoscale size range. This article reports on an unconventional Ni-P alloy-catalyzed, high-throughput, highly reproducible CVD of ultra-long carbon coil-like micro- and nano-structures using acetylene precursor at relatively low process temperatures. Helical carbon microcoils with consistently uniform, circular cross-sections and a high degree of crystallinity have been synthesized at 750 °C. A further reduction of the temperature to 650 °C led to the growth of ultra-long (up to several mm) wave-like carbon nanofibers made of two nanowires with the diameters in the 100-200 nm range. The results of the XRD and Raman analysis reveal that the nanofibers feature only a slightly more disordered structure compared to the microcoils. Our results suggest that morphology and structure of the carbon coil-like micro- and nano-structures can be tailored by the appropriate alloying of the catalyst and the choice of the CVD process parameters.
Resumo:
A theoretical model of a large-area planar plasma producer based on surface wave (SW) propagation in a plasma-metal structure with a dielectric sheath is presented. The SW which produces and sustains the microwave gas discharge in the planar structure propagates along an external magnetic field and possesses an eigenfrequency within the range between electron cyclotron and electron plasma frequencies. The spatial distributions of the produced plasma density, electromagnetic fields, energy flow density, phase velocity and reverse skin depth of the SW are obtained analytically and numerically.
Resumo:
The effect of near-sheath dusts on the rf power loss in a surface-wave-sustained gas discharge is studied. The planar plasma is bounded by a dielectric and consists of an inhomogeneous near-wall transition layer (sheath), a dusty plasma layer and an outer dust-free plasma. The discharge is maintained by high-frequency axially symmetrical surface waves. The surface-wave power loss from the most relevant dissipative mechanisms in typical discharge plasmas is analysed.
Resumo:
The excitation of pairs of electron surface waves via nonresonant decay of plasma waves incident onto a solid surface is studied in the context of controlling the interaction of pulsed electromagnetic radiation with plasma-exposed solid surfaces. The role of the plasma-exposed surfaces in nonlinear heating of the plasma edge and related power transfer is discussed. It is shown that the maximum efficiency of the power transfer at solid surfaces with dielectric permittivity εd <3 corresponds to the resonant two-surface wave decay. On the other hand, for solids with εd >3 the maximum power transfer efficiency is achieved through nonresonant excitation of the quasistatic surface waves. In this case the plasma waves generated by external radiation dissipate their energy into the plasma periphery most effectively.
Resumo:
Management of nanopowder and reactive plasma parameters in a low-pressure RF glow discharge in silane is studied. It is shown that the discharge control parameters and reactor volume can be adjusted to ensure lower abundance of nanopowders, which is one of the requirements of the plasma-assisted fabrication of low-dimensional quantum nanostructures. The results are relevant to micro- and nanomanufacturing technologies employing low-pressure glow discharge plasmas of silane-based gas mixtures.
Resumo:
Controlled interaction of high-power pulsed electromagnetic radiation with plasma-exposed solid surfaces is a major challenge in applications spanning from electron beam accelerators in microwave electronics to pulsed laser ablation-assisted synthesis of nanomaterials. It is shown that the efficiency of such interaction can be potentially improved via an additional channel of wave power dissipation due to nonlinear excitation of two counterpropagating surface waves, resonant excitations of the plasma-solid system.Physics.
Resumo:
This paper presents a comprehensive numerical procedure to treat the blast response of laminated glass (LG) panels and studies the influence of important material parameters. Post-crack behaviour of the LG panel and the contribution of the interlayer towards blast resistance are treated. Modelling techniques are validated by comparing with existing experimental results. Findings indicate that the tensile strength of glass considerably influences the blast response of LG panels while the interlayer material properties have a major impact on the response under higher blast loads. Initially, glass panes absorb most of the blast energy, but after the glass breaks, interlayer deforms further and absorbs most of the blast energy. LG panels should be designed to fail by tearing of the interlayer rather than failure at the supports to achieve a desired level of protection. From this aspect, material properties of glass, interlayer and sealant joints play important roles, but unfortunately they are not accounted for in the current design standards. The new information generated in this paper will enhance the capabilities of engineers to better design LG panels under blast loads and use better materials to improve the blast response of LG panels.
Resumo:
This paper develops and presents a fully coupled non-linear finite element procedure to treat the response of piles to ground shocks induced by underground explosions. The Arbitrary Lagrange Euler coupling formulation with proper state material parameters and equations are used in the study. Pile responses in four different soil types, viz, saturated soil, partially saturated soil and loose and dense dry soils are investigated and the results compared. Numerical results are validated by comparing with those from a standard design manual. Blast wave propagation in soils, horizontal pile deformations and damages in the pile are presented. The pile damage presented through plastic strain diagrams will enable the vulnerability assessment of the piles under the blast scenarios considered. The numerical results indicate that the blast performance of the piles embedded in saturated soil and loose dry soil are more severe than those in piles embedded in partially saturated soil and dense dry soil. Present findings should serve as a benchmark reference for future analysis and design.